

CONSTANT 26 PTY LTD

Detailed Site Investigation

19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW

> E26047.E02_Rev0 6 July 2023

Document Control

Copies	Recipient
Report No:	E26047.E02_Rev0
	Melrose Park NSW
Report Title:	Detailed Site Investigation; 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue,

	spice	
1	Soft Copy (PDF – Secured, issued by email)	Constant 26 Pty Ltd Level 1, 23 Wentworth Street, Parramatta NSW 2150
1	Original	El Australia Pty Ltd Suite 6.01, 55 Miller Street,
	(Saved to Digital Archives)	Pyrmont NSW 2009

Author		Project Manager	Technical Revie	ewer
HTP		Ley's Repaire	MJDale	
Geisiane	Torres	Sergio Raposeira	Malcolm Dale	
Environmental Engineer		Project Manager	Senior Principal – Contaminated Land CEnvP (SC Specialist) Cert.No: #40038	
Revision	Details		Date	Amended By
Draft	-		5 July 2023	_
Rev0	Updated client details		6 July 2023	-

© 2023 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

EX	ECUT	IVE SUMM	ARY	I
1.	INTE 1.1 1.2 1.3 1.4 1.5	-	d and Purpose Development Framework ectives	1 1 1 2 2
2.	SITE 2.1 2.2 2.3 2.4	DESCRIP Property Id Local Land Regional S Site Inspec	entification, Location and Physical Setting Use etting	3 3 3 4 5
3.	PRE	VIOUS INV	ESTIGATION	6
4.	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Subsurface Potential C	ontamination Sources ontaminants sment eceptors	8 8 8 9 10 11
5.	MET 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Data Qualit Data Qualit Sampling F Assessmer Soil Sampli	nd Analysis Quality Plan y Objectives y Indicators ationale t Criteria	14 14 14 18 18 19 20 21
6.	DAT		ASSESSMENT	23
7.	RES 7.1	7.1.2 G	esults ub-Surface Conditions round Penetrating Radar (GPR) and findings eld Observations	25 25 25 25 25 25

	7.2	Groundw	vater Field Results	26
		7.2.1	Monitoring Well Construction	26
		7.2.2	Field Observations	26
	7.3	Laborato	bry Analytical Results	27
		7.3.1	Soil Analytical Results	27
		7.3.2	Groundwater Analytical Results	28
8.	SITE	CHARA	CTERISATION	31
	8.1	Soil Impa	acts	31
	8.2	Groundw	vater Impacts	31
9.	CON	CLUSIO	Ν	32
10.	REC	OMMEN	DATIONS	33
11.	STA	FEMENT	OF LIMITATIONS	34
REI	EFERENCES 35			
ABI	BREV	IATIONS	6	37

Schedule of Tables

Table 2-1	Site Identification	3
Table 2-2	Local Sensitive Receptors	3
Table 2-3	Regional Setting	4
Table 3-1	Summary of the Previous Investigation	6
Table 4-1	Assessment of Potential Contamination Risk	9
Table 4-2	Revised Conceptual Site Model	12
Table 5-1	Summary of Project Data Quality Objectives	15
Table 5-2	Data Quality Indicators	18
Table 5-3	Adopted Investigation Levels for Soil and Groundwater	19
Table 5-4	Summary of Soil Sampling Methodology	20
Table 5-5	Summary of Groundwater Sampling Methodology	21
Table 6-1	Quality Control Process	23
Table 7-1	Generalised Sub-Surface Profile	25
Table 7-2	Monitoring Well Construction Details	26
Table 7-3	Groundwater Field Data	26
Table 7-4	Summary of Soil Analytical Results	27
Table 7-5	Summary of Groundwater Analytical Results	29

Appendices

APPENDIX A – FIGURES

Figure 1 - Site Locality Plan

Figure 2 - Sampling Location Plan

APPENDIX B – TABLES

Table 1 - Summary of Soil Analytical Results

Table 2 - Summary of Groundwater Analytical Results

Table 3 – Field QA/QC for Soil

Table 4 – Field QA/QC for Groundwater

APPENDIX C – PROPOSED DEVELOPMENT

APPENDIX D – SITE PHOTOGRAPHS

APPENDIX E – BOREHOLE LOGS

APPENDIX F -FIELD DATA SHEETS

APPENDIX G – CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

APPENDIX H – LABORATORY ANALYTICAL REPORTS

APPENDIX I – QA/QC ASSESSMENT

- I.1 Quality Assurance / Quality Control Program
- I.2 Calculation of Relative Percentage Difference
- I.3 Field QA/QC
- I.4 Field Data Quality Indicators
- I.5 Conclusion for the Field QA/QC
- I.6 Laboratory QA/QC
- I.7 Conclusions for the Laboratory QA/QC
- I.8 Summary of Project QA/QC

APPENDIX J – LABORATORY DQOS

Executive Summary

El Australia (El) was engaged by Payce MP 2 Pty Ltd ('the client') to conduct a detailed investigation of 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW ('the site').

The site comprises of six cadastral allotments, identified as Lot A and B in DP 356298, Lot D, E, F and G in DP 369480, Lot D, E, F and G in DP 369480 and covers an area of approximately 8,900 m². During the investigation, site is currently occupied by four residential properties and two vacant lots.

The purpose of this DSI was to provide a support for a re-zoning of the site through a Development Application (DA) to City of Parramatta Council, to determine the contamination status of the site and to meet obligations under the *State Environmental Planning Policy* (Resilience and Hazards) (2021), for the assessment and management of contaminated soil and/or groundwater, should these be identified.

The site redevelopment will involve the demolition of existing structures, followed by the construction of a multi-storey residential complex, with mixed land (commercial/residential) use on the ground floor level, overlying two level basement car park. An aesthetic landscaping area of 2,673 m² with access to deep soil will also be established on the eastern portion of the site This DSI follows on from a previous Phase I Preliminary Site Investigation completed for the site by ADE Consulting Group in December 2020 (**Section 3**).

The key findings of this DSI were as follows:

- The general site geology encountered was a layer of silty clay fill (thickness ranged between 0.1m to 0.8m), overlying residual silty clay, clay and sand (up to 2.63 mBGL) over sandstone and shale bedrock.
- Contaminant concentrations in representative fill and natural soil samples were found to be below the adopted human health and ecological criteria applicable to Residential settings with accessible soils, with the following exception:
 - Asbestos at BH3 (depths between 0.2-0.3 mBGL, at least), exceeding the criteria and warranting remediation prior excavation works or during excavation works, which could be conducted following demolition as part of the waste classification of soils for off-site disposal.
- During the GME on 31 May 2023 depth to water readings ranged from 2.88 to 5.29 mBGL. Groundwater flow direction was anticipated to be flowing in a southern direction, towards the Parramatta River based on local topography and surrounding land features. Groundwater flow direction will be further characterized during data gap assessment. Local groundwater conditions were slightly acidic (pH: 5.4 to 6.4) and fresh to brackish (EC: 254-2,921 µS/cm) in regards to water salinity.
- The laboratory analytical results for the three representative groundwater samples were found to comply with the adopted GILs, except for dissolved metal aluminium at BH1M, at BH2M and BH3M, cooper at BH1M and BH2M, nickel at BH1M and at BH2M and zinc at BH1M, at BH2M and at BH3M. Aluminium, copper, nickel and zinc were detected in groundwater above the adopted GIL. This concentration was consistent with natural (background) conditions in urban environments and did not pose risks to human health, or the environment.
- Strong trace of >C16-C34 (F3) TRHs (BH1M: 980 μg/L) was identified during the GME. Given that site soils were impacted by petroleum hydrocarbons, further assessment

(monitoring) of local groundwater quality was warranted, as part of the recommended remediation phase.

 The top of the natural soils were encountered as shallow as 0.8m, generally comprise of clay soils.

Based on the findings obtained from this DSI, and with consideration of EI's *Statement of Limitations* (**Section 11**), EI consider the site can be made suitable for the proposed development, given the recommendations detailed in **Section 10** are implemented.

El provides the following recommendations in relation to the proposed development:

- Before commencement of demolition works, a Hazardous Materials Survey (HMS) should be completed for the existing building fabrics by a suitably qualified consultant.
 - Following removal, an asbestos clearance inspection and certificate should be completed by a suitably qualified professional (SafeWork NSW Licensed Asbestos Assessor), if identified by the HMS.
- Additional intrusive investigation to close data gaps remaining at the subject site, including:
 - Targeted additional GPR scanning following the removal of the existing shipping containers to locate UST targeting the area between TP2, TP5 and TP6;
 - Increasing soil sampling coverage to achieve soil characterisation within the footprint of the current building located at the western portion of the site(when accessible); and
 - Given the historical storage of hydrocarbons onsite (former Skillco), further assessment (monitoring) of the local groundwater quality was warranted. Additional Groundwater investigation targeting exceedances, priority metals (Aluminium, copper, nickel and zinc) and TRH. All monitoring wells are to be surveyed to determine the groundwater flow directions.
- Delineation of the vertical and lateral extent of any detected soil impacts resulting from the presence of asbestos at locations (BH3);
- Preparation of an asbestos management plan (AMP) for the site, outlining the requirements for management of ACM building materials and asbestos-contaminated (fill) soil.

El emphasise that these recommendations can be managed through the development application process.

1. Introduction

1.1 Background and Purpose

El Australia (El) was engaged by Payce MP 2 Pty Ltd ('the client') to undertake a detailed site investigation (DSI) of the property located at 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW ('the site').

The site is located within the local government area (LGA) of City of Parramatta Council, comprises of six cadastral allotments, identified as Lot A and B in DP 356298, Lot D, E, F and G in DP 369480.. (**Figure 1**, **Appendix A**). It covers an area of approximately 8,900 m². Site layout is illustrated in **Figure 2**, **Appendix A**. During the investigation, site is currently occupied by four residential properties and two vacant lots.

A Phase I Preliminary Site Investigation (PSI) was previously completed in December 2020 by another consultant (ADE, 2020). Based on the report's historical land and title searches, the land at 69, 71, 73, 75 and 77 Hughes Avenue has remained as residential since the 1930s. The land at 19 Hope Street was changed from residential to industrial in the 1960s, and has remained as industrial land use till the present date. A Stage 2 investigation (DSI) was recommended for intrusive assessment of soil and groundwater on the property.

The purpose of this DSI was to provide a support for a re-zoning of the site through a Development Application (DA) to City of Parramatta Council, to determine the contamination status of the site and to meet obligations under the *State Environmental Planning Policy* (Resilience and Hazards) (2021), for the assessment and management of contaminated soil and/or groundwater, should these be identified.

1.2 Proposed Development

Based on the OLSSON (2022) architectural plans supplied by the client and PSI (ADE, 2020) (**Appendix C**), site redevelopment comprises the demolition of existing structures and the construction of a multi-storey residential complex; with mixed land (commercial/residential) use on the ground floor level, overlying two level basement car park. An aesthetic landscaping area of 2,673 m² with access to deep soil will also be established on the eastern portion of the site.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during this DSI:

- Contaminated Land Management Act 1997 (the CLM Act 1997);
- Protection of the Environment Operations Act 1997 (the POEO Act 1997);
- Environmental Planning and Assessment Act 1979 (the EP&A Act 1979);
- Guidelines on the Duty to Report Contamination under the Contaminated Land Management (Act 1997);
- State Environmental Planning Policy (Resilience and Hazards) (2021);
- Parramatta Local Environmental Plan 2023;
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines;
- NSW EPA (2022) Sampling Design Part 1 Application; and

• NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater and Schedule B(2) Guideline on Site Characterisation, in the National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999.

1.4 Project Objectives

The objectives of this investigation were to:

- Assess the degree of soil and groundwater contamination (if present), by intrusive sampling and laboratory analysis for the relevant contaminants;
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed; and
- Provide a conclusion regarding suitability of the site for the proposed land zoning.

1.5 Scope of Works

To achieve the above objectives, the following scope of works was completed:

Desktop Study

- A review of relevant topographical, geological and soil landscape maps for the project area; and
- A review of the previous environmental reports.

Fieldwork and Laboratory Analysis

- A review of existing underground services on-site, utilising *Before-You-Dig* plans and electro-magnetic equipment operated by a licensed services locator and Ground Penetrating Radar (GPR) survey at targeted underground storage tank locations;
- A site inspection;
- Sampling from fifteen locations (BH1 to BH5, HA1 to HA4 and TP1 to TP6), systematically
 positioned in accessible areas of the site. Samples TP5 and TP6 targeted underground
 storage tank.
- Conversion of three of the boreholes into groundwater monitoring bores (BH1M, BH2M and BH3M);
- Multiple level soil sampling within fill and natural soils in each borehole;
- Completion of one groundwater monitoring event (GME), including measurement of standing water levels (SWLs) and representative sampling at the newly installed wells and at a previous installed well found at the time of this investigation; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters, as determined by the desktop study and field observations.

Data Analysis and Reporting

This DSI report documents all desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. It also provides a record of observations made during the site inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in accordance with NSW EPA guidelines in regards to potential risks to human health, the environment and the aesthetic condition of the land. A Geotechnical Investigation for the site is currently being conducted by EI.

2. Site Description

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**. The site locality and assessment area are illustrated in **Figures 1** and **2**, **Appendix A**. For further site details, refer to the PSI (ADE, 2020 – Section 3).

proximity to the site: SS 180653: on the Hughes Avenue (73m north-west); SS165816: on the Hope Street (259m south-east); SS180655: on the Hughes Avenue (237m north-west); SS88999: on the Hughes Avenue (243m west);		entification
Site AreaApproximately 8,900 m²Lot and Deposited Plan (DP)• Lot A; DP356298 369480 (69 Hughes Avenue, Melrose Park); • Lot B, DP356298 (73 Hughes Avenue, Melrose Park); • Lot D in DP 369480 (73 Hughes Avenue, Melrose Park); • Lot E in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot E in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot G in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot G in DP 369480 (19 Hope Street, Melrose Park).Site CoordinatesNorthern-eastern corner of site (GDA2020-MGA56): • Easting: 321178.079; • Northing: 6256791.759. (Source: http://maps.six.nsw.gov.au)State Survey MarksFour state survey marks and two permanent marks are situated within clo proximity to the site: • SS 180653: on the Hughes Avenue (73m north-west); • SS165816: on the Hope Street (259m south-east); • SS180655: on the Hughes Avenue (237m north-west); • SS889999: on the Hughes Avenue (243m west); • PM33893 on the corner of Hughes Avenue and Hughes Avenue (259m west); 	Attribute	Description
Lot and Deposited Plan (DP)• Lot A; DP356298 369480 (69 Hughes Avenue, Melrose Park); • Lot B, DP356298 (73 Hughes Avenue, Melrose Park); • Lot D in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot E in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot F in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot G in DP 369480 (75 Hughes Avenue, Melrose Park); • Lot G in DP 369480 (19 Hope Street, Melrose Park); • Site CoordinatesSite CoordinatesNorthern-eastern corner of site (GDA2020-MGA56): • Easting: 321178.079; • Northing: 6256791.759. (Source: http://maps.six.nsw.gov.au)State Survey MarksFour state survey marks and two permanent marks are situated within clo proximity to the site: • SS 180653: on the Hughes Avenue (237m north-west); • SS165816: on the Hughes Avenue (243m west); • SS180655: on the Hughes Avenue (243m west); • PM33893 on the corner of Hughes Avenue and Hughes Avenue (238m west);an • PM33894: on the corner of Hughes Avenue and Hughes Avenue (259m west); (Source: http://maps.six.nsw.gov.au)LGACity of Parramatta CouncilCurrent ZoningE4: General Industrial and R2: Low density Residential	Street Address	19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW
Plan (DP) Lot B, DP356298 (73 Hughes Avenue, Melrose Park);Lot D in DP 369480 (73 Hughes Avenue, Melrose Park);Lot E in DP 369480 (75 Hughes Avenue, Melrose Park);Lot F in DP 369480 (75 Hughes Avenue, Melrose Park);Lot G in DP 369480 (19 Hope Street, Melrose Park); andLot G in DP 369480 (19 Hope Street, Melrose Park). Site CoordinatesNorthern-eastern corner of site (GDA2020-MGA56): Easting: 321178.079;Northing: 6256791.759.(Source: http://maps.six.nsw.gov.au) State Survey MarksFour state survey marks and two permanent marks are situated within clo proximity to the site: SS 180653: on the Hughes Avenue (73m north-west);SS 180655: on the Hughes Avenue (237m north-west);SS 180655: on the Hughes Avenue (243m west);PM33893 on the corner of Hughes Avenue and Hughes Avenue (238m west); an PM33894: on the corner of Hughes Avenue and Hughes Avenue (259m west);(Source: http://maps.six.nsw.gov.au) LGACity of Parramatta CouncilCurrent ZoningE4: General Industrial and R2: Low density Residential	Site Area	Approximately 8,900 m ²
 Easting: 321178.079; Northing: 6256791.759. (Source: http://maps.six.nsw.gov.au) State Survey Marks Four state survey marks and two permanent marks are situated within clo proximity to the site: SS 180653: on the Hughes Avenue (73m north-west); SS165816: on the Hope Street (259m south-east); SS180655: on the Hughes Avenue (237m north-west); SS180655: on the Hughes Avenue (243m west); PM33893 on the corner of Hughes Avenue and Hughes Avenue (238m west); PM33894: on the corner of Hughes Avenue and Hughes Avenue (259m west); (Source: http://maps.six.nsw.gov.au) LGA City of Parramatta Council Current Zoning E4: General Industrial and R2: Low density Residential 	•	 Lot B, DP356298 (73 Hughes Avenue, Melrose Park); Lot D in DP 369480 (73 Hughes Avenue, Melrose Park); Lot E in DP 369480 (75 Hughes Avenue, Melrose Park); Lot F in DP 369480 (75 Hughes Avenue, Melrose Park); and
proximity to the site:SS 180653: on the Hughes Avenue (73m north-west);SS 165816: on the Hope Street (259m south-east);SS180655: on the Hughes Avenue (237m north-west);SS88999: on the Hughes Avenue (243m west);PM33893 on the corner of Hughes Avenue and Hughes Avenue (238m west);PM33894: on the corner of Hughes Avenue and Hughes Avenue (259m west);(Source: http://maps.six.nsw.gov.au)LGACity of Parramatta CouncilCurrent ZoningE4: General Industrial and R2: Low density Residential	Site Coordinates	 Easting: 321178.079; Northing: 6256791.759.
Current Zoning E4: General Industrial and R2: Low density Residential	State Survey Marks	 SS 180653: on the Hughes Avenue (73m north-west); SS165816: on the Hope Street (259m south-east); SS180655: on the Hughes Avenue (237m north-west); SS88999: on the Hughes Avenue (243m west); PM33893 on the corner of Hughes Avenue and Hughes Avenue (238m west);and PM33894: on the corner of Hughes Avenue and Hughes Avenue (259m west);
	LGA	City of Parramatta Council
	Current Zoning	-

Table 2-1 Site Identification

2.2 Local Land Use

The site is situated within an area of mixed use. The local sensitive receptors within close proximity (<250m) to the site are identified in **Table 2-2**.

Table 2-2 Local Sens	sitive Receptors
----------------------	------------------

Direction	Land Use Description	Sensitive Receptor (and distance from site)
North	Residential Car park Industrial	Residences (immediately adjacent) Car park users (immediately adjacent)

Direction	Land Use Description	Sensitive Receptor (and distance from site)
South	Industrial properties	Users (approximately 70m south)
	Car park Ermington Bay Nature Trail	Ermington Bay Nature Trail (approximately 300m southeast)
	Archer Park	Archer Park (approximately 367m southeast)
	Ermington Bay	Ermington Bay (approximately 410m south)
	Parramatta river	Parramatta river (approximately 590m south)
East	Industrial properties	Car park Users (approximately 150m south)
	Car park	
West	Residential properties	Residences (approximately 68m west)

2.3 Regional Setting

The topography, geology and soil landscape information are summarised in Table 2-3.

Attribute	Description	
Topography	The site is located on the corner of Hughes Avenue and Hope Street within moderately (10° to 18°) south dipping topography with site levels varying from R.L. 14.78 at the west northern site corner to R.L. 10.26 at the east southern site corner.	
Site Drainage	Likely to be consistent with the general slope of the site. Stormwater is expected to be collected in pits and drained to the municipal collection system, which ultimately drains to the Ermington Bay (approximately 410m south of the site) and ultimately to Parramatta River, (approximately 590m south of the site)	
Regional Geology	The Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 indicates the site is underlain by Hawkesbury Sandstone (Rh) of Middle Triassic Age. Hawkesbury Sandstone is described as comprising medium to coarse grained quartz sandstone, with very minor shale and laminite lenses.	
Soil Landscape	Soil Landscape Based on PSI (ADE, 2020) the soil landscape at the Site is identified as belonging the Lucas Heights Soil Landscape. The Lucas Heights soil landscape is defined a gently undulating crests and ridges on plateau surfaces of the Mittagong Formatio (alternating bands of shale and fine grained sandstones). Local relief to 30 m, slop <10%. Rock outcrop is absent. Low open-forest and woodland (dry sclerophy Soils—moderately deep (50–150 cm), hardsetting yellow podzolic soils and yello soloths (Dy2.41). Limitations—localised water erosion hazard, localised shallow soi stony soils with low soil fertility and low available water capacity.	
Acid Sulfate Soil (ASS) Risk	With reference to the Prospect Parramatta River (9130N3) and Parramatta Local Environmental Plan 2023 the site is within a <i>Class 5</i> ASS area, indicating low potential for ASS to be present. Additionally the site lies within an area having ' <i>No Known Occurrence</i> '. In such cases, ASSs are not known or expected to occur and "land management activities are not likely to be affected by ASS materials."	
Nearest Surface Water Feature	Ermington Bay (approximately 410 m south of the site) and Parramatta River, (approximately 590 m south of the site).	
Hydrogeological Environment	Based on PSI (ADE, 2020) the site is located underlying soil in the area generally consists of residual sediments. These late Permian / Triassic sediments comprise the underlying surficial sediment aquifer and are defined as porous, extensive aquifers of low to moderate productivity.	
Groundwater Bore Records and	An online search for groundwater bores registered with Water NSW was conducted by EI on 22 June 2023 (Ref. <u>https://realtimedata.waternsw.com.au/water.stm</u>). The search revealed no registered bores were identified within a 500m radius of the site.	

Table 2-3Regional Setting

2.4 Site Inspection

A historical detailed site walkover was completed during the PSI (ADE, 2020. The latest site walkover completed by EI on 25 May 2023 noted the following findings:

- The parcel of land located at 19 Hope Street, Melrose Park (Lot G of DP369480) was found to be vacant and the former structures identified during the PSI were no longer present. The area was bounded by a metal fence and the former Skillco (Design and Construct) office and warehouse was demolished. Only the electrical transmission tower remains in the north-eastern corner of the Site. Some aggregate was found in the driveway (Photograph 1, Appendix D) and three (3) shipping containers are located onsite (Photograph 2, Appendix D).
- No above ground tanks were found to be present onsite.
- The lot at 69 Hughes Avenue (Lot A, DP356298) was found to be vacant and bounded by a metal fence (Photograph 3, Appendix D).
- Residential dwellings are located at 71, 73, 75 and 77 Hughes Avenue (refer to Photographs 4 up to 7, Appendix D), which were inaccessible at the time of inspection. Observations recorded from street view revealed that the residential dwellings located at 73, 75 and 77 were older properties, suspected to be made from building materials predating the 1980's (e.g. asbestos fibre cement panels etc). The residential property located at 69 Hughes Street appeared to be constructed of modern building materials. The area of land for 69 Hughes Street is vacant consisting of grass and is bounded by a metal fence.

- Historically, as noted on the PSI, the parcel of land at 19 Hope Street contained the former Skillco (Design and Construct) office and warehouse in the south that appeared to be in poor to good condition. Fibre cement panels and fragments presumed to contain asbestos were observed within the south eastern entrance to the office foyer. Four (4) offices, two (2) bathrooms and a kitchenette with an adjoining warehouse were observed within the interior. The interior of the office area and warehouse were observed to be in good condition. No storage of hazardous chemicals spills or signs of contamination were observed within the interior. A power distribution box and switchboard were observed on the southern wall of the warehouse area. An outdoor garage area is located in the immediate north and northeastern exterior of the Skillco warehouse, and was observed to contain a decommissioned bowser, liquid waste separator, air compressor and a shed containing oil, liquid softeners, paint etc. The ground of the garage area in the south-western corner, minor surface staining was observed.
- The PSI also indicating from Safework information that one (1) 16,000 L underground unleaded petrol storage tank (UST), one (1) 5,000 L above ground diesel storage tank (AST) and one (1) fuel bowser was located on 19 25 Hope Street. During the works completed as part of the DSI, a GPR scanning was completed by a certified service locator, but was unable to detect any underground storage tank.

3. Previous Investigation

Previous investigations were completed for the site by ADE Consulting Group entitled:

 ADE (2020) Phase I Preliminary Site Investigation, 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW, Ref. MPR-02-18691| PSI.v1f, dated 15 December 2020.

A summary of the key findings of the report relevant to the DSI were provided in Table 3-1.

Project Task	Findings
Preliminary Site	Investigation (ADE, 2020)
Objective	 Identify past and present potentially contaminating activities; Identify potential sources of contamination and types of contaminants; Discuss the Site conditions; Provide a preliminary assessment of Site contamination; and Assess whether any further investigations are required.
Scope of Works	 The scope of the investigation included Completion of a Safety, Health & Environmental Work Method Statement (SH&EWMS) prior to undertaking works; Desktop Site review of: Land title records; Section 10.7 (formerly Section 149) planning certificate; NSW OEH public register of state heritage inventory items; NSW Environment Protection Authority (EPA) contaminated lands register for notifications; and Page 9 Commercial in Confidence Phase I Preliminary Site Investigation 19 Hope Street & 69, 71, 73, 75, 77 Hughes Ave, Melrose Park NSW - Dial Before You Dig (DBYD) service search.

Table 3-1 Summary of the Previous Investigation

Project Task	Findings				
	 Review of past and current activities on the Site; 				
	 Review of past and current activities on neighbouring sites and identification of any potential onsite/off-site sources of contamination; 				
	 Review of past aerial photographs of the Site and its surrounds to identify the locations of any previous buildings and / or other infrastructure associated with activities that could be on-site / offsite sources of contamination; 				
	 Review of local geology and hydrogeology (including groundwater bore search); Review of the potential acid sulfate soil risk on the Site; 				
	 Site inspection by experienced Environmental Consultants; and Preparation of a Stage I PSI report outlining: 				
	 Detailed information on the results of the desktop review and site inspection; Conclusions regarding the potential for contamination at the Site; Conclusions regarding Site suitability for the proposed land use; and Recommendations for a Stage II DSI, should it be warranted. 				
Conclusions	 Due to the nature of residential construction from the 1940's to 2000's and the prevalent use of asbestos and lead materials during this time period, potential asbestos containing materials (ACM) and or lead and or containing products may have or can impact the surficial and / or upper soil profile; 				
	 Potential Heavy Metals, Organochlorine Pesticides (OCPs) and Organophosphate pesticides (OCPs) contamination of the surficial and / or upper soil profile as a result of small-scale use of pesticides and herbicides; 				
	 Potential for contamination via imported fill materials used in the construction throughout the past. Due to the uncontrolled nature of this material there is the potential for a range of contaminants being present including, but not limited to Heavy Metals, Poly Aromatic Hydrocarbons (PAHs), Total Recoverable Hydrocarbons (TRHs), Benzene, Toluene Ethyl-benzene and Xylene (BTEX), PCBs, OCPs, OPPs and asbestos; 				
	 Potential for TPHs/TRHs, BTEX, Phenols, Heavy metals, asbestos, VOCs, PCBs and cyanides via accidental spillage and uncontrolled chemical waste management within the former outdoor garage footprint located at 19 Hope Street; and 				
	 Potential for TPHs/TRHs, BTEX, Phenols, Heavy metals, VOCs, PAHs, PCBs, cyanides, OPPs, OCPs, via horizontal and vertical migration of the contaminants and/ or via rain to the ground and nearby surface waters. 				
Recommendations	 Based on the above findings, it was concluded that there was moderate potential for contamination to exist on the site as a result of the past and present land-uses. Further investigation was warranted, in order to determine the suitability of the site for proposed development. The following recommendation were provided: 				
	 Undertake a Stage II DSI to assess soil and groundwater quality at the site in accordance with the NSW OEH 2011. 				
	 Undertake a hazardous materials assessment before commencement of any demolition works with all hazardous materials identified on a register and a clearance certificate be obtained from a licenced removalist/ asbestos assessor. 				

4. Conceptual Site Model

In accordance with NEPC (2013) *Schedule B2 - Guideline on Site Characterisation*, El developed a conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for identifying data gaps in the existing site characterisation and future site assessments. Potential contamination sources, exposure pathways and receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways.

The CSM takes into account the re-zoning to the mixed use land use, as outlined in **Section 1.2** and the development plans attached under **Appendix C**. Under the proposed development with a lower ground floor level overlying two level basement car park, excavations across mostly of the site area are expected.

4.1 Subsurface Conditions

The general site geology encountered was a fill layer (thickness ranged between 0.1 m to 0.8 m), overlying residual silty clay, clay and sand (up to 2.63 mBGL) over sandstone and shale bedrock.

Groundwater seepage was found at 2.3 mBGL, during drilling of BH2M and standing water levels were measured between 1.92 Meters Below Top of Casing mBTOC (BH1M), 4.96 mBTOC (BH2M) and 2.9 mBGL (BH3M) Groundwater is expected to flow towards the south of the site towards Ermington Bay and ultimately Parramatta river.

4.2 Potential Contamination Sources

On the basis of site history and search findings detailed in **Section 3 and 4** the potential onsite contamination sources EI consider the potential onsite contamination sources as follows:

- Former on-site industrial activities (Automotive Garage/Workshop);
- Fill materials use on site;
- Uncontrolled demolition (previous and current dwellings and structures on-site);
- Hazardous building materials (including potential ACM and lead-based paints) likely to be present within the current site structures;
- Underground and Aboveground storage of fuel and Fuel Bowser (petrol UST, diesel AST and fuel dispenser observed). The previous report suggested these were proposed to be removed;
- Application of pesticides;
- Migration of potential contaminants from upgradient neighbouring properties (historical/ current surrounding Land Uses); and
- Electrical Switchboards and Associated Infrastructure.

4.3 Potential Contaminants

Potential contaminants at the site were considered to be:

Soil:

Metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn));

- Total recoverable hydrocarbons (TRH);
- Volatile organic compounds (VOC); including the monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl-benzene and xylenes (BTEX);
- Chlorinated Volatile Organic Compounds (cVOC)
- Polycyclic aromatic hydrocarbons (PAH);
- Organochlorine and Organophosphorous pesticides (OCP/OPP);
- Oil and Grease;
- Total Petroleum Hydrocarbons (TPH);
- Ozone Depleting Substances (ODS);
- Cyanide;
- Phenols;
- Per- and Poly-Fluoroalkyl Substances (PFAS); and
- Asbestos.

Groundwater:

- Metals (aluminium (al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn));
- TRH;
- Acidity (pH);
- VOC (including BTEX);
- PAHs;
- Cyanide;
- Phenols; and
- PFAS

4.4 Risk Assessment

An assessment of the potential contamination risks for the site is outlined in Table 4-1.

 Table 4-1
 Assessment of Potential Contamination Risk

Potential Source	Impacted Medium	COPC	Risk of Exposure
Former on-site industrial activities (Automotive Garage/Workshop)	Soil Groundwater	Priority Metals, PAHs, cVOCs, TRHs, TPHs, Oil and Grease, BTEX, Phenols, Cyanide, PFAS and Asbestos.	Medium - High Given the long-term historical industrial (since 1960) use of the site.
Accidental spillage and uncontrolled chemical waste management within the former outdoor garage footprint located at 19 Hope Street (ADE, 2020)	Soil Groundwater	Priority Metals, PAHs, VOCs, TPHs/TRHs, BTEX, Phenols, PCBs, Cyanide, PFAS and Asbestos.	Medium - High Given the long-term historical industrial (since 1960) use of the site.
Use of fill on site	Fill soil	Priority Metals, PAHs, TRHs, BTEX, PAH, OCPs / OPPs, PCBs,	Low to Medium Filling up to 0.8m thickness presen

Potential Source	Impacted Medium	COPC	Risk of Exposure
		PFAS and Asbestos.	on-site. Soil stockpiles approximately 60 m ³ were identified (ADE, 2020).
Uncontrolled demolition (previous and current dwellings and structures on- site)	Fill soil	Priority Metals, TRHs, BTEX, OCPs / OPPs and Asbestos	Low to medium A visual inspection of drilled soils did not identify buried construction materials with an exception of bricks fragments at locations (TP1, BH1M, BH3M, BH4 and BH5).
Hazardous building materials (including potential ACM and lead-based paints) likely to be present within the current site structures	Building fabrics Near surface soil	Metal lead and asbestos	Medium Hazardous materials are expected on site structures. During demolition this may present a risk of exposure for the proposed development.
Underground and Aboveground storage of fuel and Fuel Bowser (petrol UST, diesel AST and fuel dispenser observed)	Soil and groundwater	PM, TRH, VOC (including BTEX), PAH and phenols	Medium Petrol USTs, Diesel AST and fuel dispenser were identified by (ADE, 2020) during the site visit and SafeWork records also indicated the presence of UST, AST and fuel dispenser (containing petrol and diesel).
Application of pesticides	Near surface soil (building footing areas)	PM (arsenic and copper), OCP, OPP	Medium Pesticides are expected to be limited to shallow, building footprint soils.
Migration of potential contaminants from neighbouring properties (historical/ current surrounding Land Uses)	Soil Groundwater Surface Water Sediment	Priority metals, TRH/TPH, BTEX, ODS, Phenols, asbestos, VOCs, PCBs, cyanides	Medium Local area has a long history of industrial use / activities.
Electrical Switchboards and Associated Infrastructure	Soil Groundwater	Priority metals (aluminium, copper and zinc), Asbestos, PCBs	Medium Electrical infrastructure was identified on site.

4.5 Identified Receptors

The following potential receptors of site contamination were identified:

- Current and future site users;
- Demolition and construction workers;
- Future site users, including intrusive (maintenance) workers;
- Adjacent site users, hydraulically downgradient of the site; and
- Ecological receptors (Parramatta River ecosystems).

4.6 Revised CSM

Given the qualitative risk assessment summarised in **Section 4.4**, the risks to the receptors in **Section 4.5** were considered to be medium. Refer to **Table 4-2** for a revised CSM.

4.7 Data Gaps

Additional intrusive (soil and groundwater) sampling and analysis was required, to assess the contamination risks. The gaps, or decisions, requiring closure were:

- Are the contaminant concentrations present within the site at levels which indicate a potential unacceptable risk to the sensitive users of the site and surroundings?
- Were the previously reported USTs still present onsite?
- Are soil and/or groundwater at the site suitable for the proposed use?

These are addressed in this report.

Table 4-2 Revised Conceptual Site Model

Potential Source	Impacted Media	Contaminants of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Former on-site industrial activities (Automotive Garage/Workshop)	Soil	Priority Metals, PAHs, VOCs, TRHs, BTEX, Phenols, Cyanide, PFAS and Asbestos.	Volatilisation of contamination from soil and diffusion to indoor air spaces.	Inhalation of vapours	Current and future site users Demolition / construction workers Future intrusive workers
Accidental spillage and uncontrolled chemical waste management within the former outdoor garage footprint located at 19 Hope	Soil Groundwater	Priority Metals, PAHs, VOCs, TPHs/TRHs, BTEX, Phenols, PCBs, Cyanide and Asbestos.	Migration in groundwater.	Ingestion Dermal contact Biota uptake	Current site users Adjacent land users Ecological receptors (via the stormwater channel)
Jse of fill on site	Fill soil	Priority Metals, PAHs, TRHs, BTEX, PAH, OCPs / OPPs, PCBs, PFAS and Asbestos.	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment.	Ingestion Dermal contact Inhalation of vapours	Demolition / construction workers
Uncontrolled demolition previous and current dwellings and structures on- site)	Fill soil	Priority Metals, TRHs, BTEX, OCPs / OPPs and Asbestos	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment.	Dermal Contact Ingestion Inhalation	Site Workers during demolition and construction Future site users Plants in accessible soil areas
Hazardous building naterials (including potential ACM and lead- pased paints) likely to be present within the current site structures	Soil	Metal lead and asbestos	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment.	Ingestion Dermal contact Inhalation of fibres	Demolition / construction workers Surrounding lands users
Jnderground and Aboveground storage of uel and Fuel Bowser (petrol JST, diesel AST and fuel lispenser observed)	Soil Groundwater	PM, TRH, VOC (including BTEX), PAH and phenols	Volatilisation of contamination from groundwater to indoor or outdoor air spaces (onsite and offsite)	Inhalation of vapours	Demolition / construction workers Adjacent site users Future site users Future intrusive workers

Potential Source	Impacted Media	Contaminants of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Application of pesticides	Soil	PM (arsenic and copper), OCP, OPP	Disturbance of surface and subsurface soils during site development and future maintenance / use of the site post redevelopment. Atmospheric dispersion from soil to outdoor and indoor air spaces. Volatilisation from soil and diffusion to indoor and outdoor air spaces	Ingestion Dermal contact Inhalation of dust particulates Inhalation of vapours	Current site users Demolition / excavation / construction workers Future site users
Migration of potential contaminants from neighbouring properties (historical/ current surrounding Land Uses)	Soil Groundwater Surface Water Sediment	Priority metals, TRH, BTEX, Phenols, asbestos, VOCs, PCBs, cyanides	Disturbance of surface soils during site redevelopment, future site maintenance and future use of the site post redevelopment. Volatilisation from soil and diffusion to indoor and outdoor air spaces. Migration in groundwater.	Ingestion Dermal contact Inhalation of dust particulates Inhalation of vapours Biota uptake	Current site users Demolition / excavation / construction workers Adjacent land users Future site users Ecological receptors (via the stormwater channel)
Electrical Switchboards and Associated Infrastructure	Soil Groundwater	Priority metals (aluminium, copper and zinc), Asbestos, and PCBs,.	Dispersion of airborne particulates due to wind following demolition activities/dust generating activities.	Ingestion Dermal contact Inhalation of dust particulates	Current site users Demolition / excavation / construction workers Adjacent land users Future site users

5. Methodology

5.1 Sampling and Analysis Quality Plan

The sampling and analysis quality plan (SAQP) ensures that the data collected during environmental works are representative and provide a robust basis for assessment decisions. The SAQP for this DSI included the following:

- Data quality objectives (DQO), including a summary of the objectives of the DSI;
- Investigation methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling procedures (including sample handling, preservation and storage);
- Field screening methods;
- Laboratory analysis methods; and
- Analytical quality assurance / quality control (QA/QC).

5.2 Data Quality Objectives

In accordance with the NEPC (2013) *Schedule B2 Guideline on Site Characterisation*, the USEPA (2006) *Data Quality Assessment* and EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, DQO were developed following the seven step process (**Table 5-1**). In doing so, the appropriate levels of data quantity and quality needed for the specific requirements of the project were established.

Table 5-1 Summary of Project Data Quality Objectives

DQO Step	Details
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Site redevelopment involves the demolition of existing structures, followed by the construction of a multi-storey residential complex, with mixed land use on the ground floor level, overlying two basement car park (Section 1.2). Based on the proposed land use, the site will be assessed against the NEPC (2013) setting of mixed use of residential and commercial. The investigation was required to assess the conditions of site soils and/or groundwater and enable the developer to meet their obligations under <i>SEPP 2021</i> and <i>CLM Act</i> , for the assessment and management of contaminated soil and/or groundwater. The findings of the DSI must provide supportive information on the environmental condition of the site, to determine suitability for the proposed re zoning.
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them.	 Based on the objectives outlined in Section 1.4, the decisions that need to be made were: Has the nature, extent and source of any soil and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the suitability of the site to be determined, or selection and design of an appropriate remedial strategy, if necessary? If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy?
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements.	 Inputs to the decision making process included: The proposed development and land use; Review of previous investigations; National and NSW EPA guidelines made or approved under the <i>NSW Contaminated Land Management Act 1997</i>; Observations during / from soil and groundwater sampling; and Laboratory analytical results for the selected soil and groundwater samples. At completion of the DSI, a decision is required regarding the suitability of the site for the proposed redevelopment, or if additional investigation is required to confirm that the site is suitable for the development or if remediation is required to make the site suitable.
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision.	Lateral – The proposed development area, as shown on Figure 2 , Appendix A ; Vertical – Investigations were advanced to the depth of natural soils or rock, majority depths ranged between 0.4 to 1.4 mBGL with three boreholes cored in sandstone with a maximum intrusive investigation advanced depth of maximum depth of 25.22 mBGL (refer to Borelogs in Appendix E ; Temporal – The results were valid for the day samples were collected and remain so as long as no changes occur in regards to site use, and contamination (if present) does not migrate onto the site from off-site sources.

DQO Step	Details
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions.	 The decision rules for the investigation were: If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria, then assess the need to furthe investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data.	 Specific limits for this project were in accordance with National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This included the following points to quantify tolerable limits: The null hypothesis for the investigation was that the 95% Upper Confidence Limits (UCL) of the average concentration of contaminants or concern exceed relevant commercial/industrial soil land use criteria across the site. Acceptance of site suitability was based on the probability that: The 95% UCL of the average concentration of the data set satisfied the given site criteria (thus, a limit on the decision error was 5% that a conclusive statement may be incorrect); The standard deviation of the data set was less than 50% of the relevant criteria; and No single result exceeded the criteria by 250% or more. Soil and groundwater concentrations for the potential chemicals that were below investigation criteria made or approved by the NSW EPA were treated as acceptable and indicative of suitability for the proposed land use(s). If contaminant concentrations exceeded the adopted criteria, further investigation was considered prudent. If no contamination was detected no further action was required.

DQO Step	Details			
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs.	 In order to identify the most resource-effective sampling and analysis design and satisfy the DQOs: Soil sampling was conducted at fifteen locations (drilled boreholes) using a stratified sampling pattern across accessible parts of the site, in with low density systematic sampling in the broader site and a medium density at historical commercial/industrial usages of the site. A portion of the site was not assessable due to tenants occupyingexisting residential buildings, and will be assesses following demolition to ensure compliance with the minimum number points recommended under the NSW EPA (2022) Sampling Design Part 1 – Application. An upper soil profile sample was collected at each borehole location and tested for the potential contaminants (Section 4.3), to assess the conditions of the fill layer, and impacts from activities at ground level. 			
	 Further discrete, natural samples were analysed for metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn)), total recoverable hydrocarbons (TRH), volatile organic compounds (VOC); including the monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl-benzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorous pesticides (OCP/OPP), Cyanide, Phenols, Per- and Poly-Fluoroalkyl Substances (PFAS), pH, pH peroxide, sPOCAS and asbestos. 			
	 Three groundwater monitoring wells were installed. The three newly installed monitoring well were gauged and sampled to assess groundwater quality at the site. 			
	 A groundwater monitoring event (GME) was completed, with laboratory analysis of representative samples for the potential contaminants. Review of the results was undertaken to determine if further sampling was warranted. 			

5.3 Data Quality Indicators

To ensure that the investigation data were of an acceptable quality, they were assessed against the quality indicators outlined in **Table 5-2**. Assessment of data quality is presented in **Section 6** and **Appendix I**.

Table 5-2 Data Quality Indicators

QA/QC Component	Data Quality Indicator(s)		
Precision A quantitative measure of the variability (or reproducibility) of data	Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision was deemed acceptable if RPDs were found to be less than 30%. RPDs that exceeded this range were considered acceptable where: • Results were less than 10 times the limits of reporting (LOR); • Results were less than 20 times the LOR and the RPD was less than 50%; or • Heterogeneous materials or volatile compounds were encountered.		
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets; Field and method blanks, analysed for the analytes targeted in the primary samples; Matrix spike sample sets; and Laboratory control samples. 		
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of RPD values for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage, and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 		
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the DSI were evaluated as complete upon confirmation that: Industry standard procedures for sampling protocols were adhered to; and Copies of all chain of custody (COC) documentation were included and found to be properly completed. It could therefore be considered whether the proportion of "useable data" generated in the data collection activities was sufficient for the purposes of the land use assessment. 		
Comparability The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Data sets from separate sampling episodes were required and issues of comparability were reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition, the data were collected by experienced samplers and NATA-accredited laboratory methodologies will be employed.		

5.4 Sampling Rationale

With reference to the CSM described in **Section 4**, soil and groundwater investigation were planned in accordance with the following rationale:

 Sampling of fill and natural soils from fifteen locations (BH1 to BH5, HA1 to HA4 and TP1 to TP6), placed on stratified sampling pattern, with low density systematic sampling in the

broader site inclusive of the existing residential properties and a medium density (TP3, TP5, TP6 and BH1M) targeting underground storage tank and historical commercial/industrial usages of the site. Systematically grid based sampling divided to encompass accessible site areas at the remaining sampling locations.

- Installation of three groundwater monitoring wells (BH1M, BH2M and BH3M); positioned hydraulically up and down gradient at the site.
- Completion of a single GME, at the three newly installed monitoring wells to characterise local groundwater conditions.
- Laboratory analysis of representative soil and groundwater samples for the potential contaminants, identified in **Section 4.3**.

5.5 Assessment Criteria

The assessment criteria adopted for this DSI are outlined in **Table 5-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways, and the identified potential receptors.

For the purposes of this DSI, the adopted soil assessment criteria are referred to as the *Soil Investigation Levels* (SILs) and the adopted groundwater assessment criteria are referred to as *Groundwater Investigation Levels* (GILs).

Medium	Guidelines	Rationale
Soil	NEPC (2013) HILs, HSLs and Management Limits	Soil Health-based Investigation Levels (HILs) NEPC (2013) <i>HIL-A</i> Residential settings with accessible soils.
	for TRH	NEPC (2013) <i>HIL-D</i> thresholds for commercial/industrial settings. Soil Health-based Screening Levels (HSLs)
		NEPC (2013) <i>HSL-A&B</i> thresholds for vapour intrusion at low to high density residential sites were applied to assess soil conditions outside of proposed basement footprints.
		NEPC (2013) <i>HSL-D</i> thresholds for vapour intrusion at commercia sites were applied to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene.
		Asbestos Health Based Screening Levels:
		For asbestos in soil, the following criteria are applicable:
		 No visible asbestos on soil surface in all areas of the site;
		 Bonded ACM
		HSL-A: 0.01% for bonded ACM
		Friable Asbestos: 0.001% w/w in all areas of the site.
		Ecological Investigation Levels (EILs) / Ecological Screenin Levels (ESLs)
		NEPC (2013) EILs/ESLs for commercial and industrial land us
		scenarios were adopted, to assess the potential impact to propose landscaping area, where plants could be exposed to soils and whe
		precipitation may result in subsurface infiltration and resulting leachir of soil impacts to groundwater. The derived EILs were determined to
		the addition of site specific Added Contaminant Limit (ACL) and the
		Ambient Background Concentration (ABC) for a high traffic NSV suburb. The adopted ESL criteria were based on grained criteria.
		Management Limits for Petroleum Hydrocarbons
		Where the HSLs and ESLs for petroleum hydrocarbons were exceeded, sample results were also assessed against the NEP

 Table 5-3
 Adopted Investigation Levels for Soil and Groundwater

Medium	Guidelines	Rationale		
		(2013) <i>Management Limits</i> for the F1-F4 TRH fractions, to asses propensity for phase-separated hydrocarbons (PSH), fire an explosive hazards and adverse effects on buried infrastructure.		
Groundwater	ANZG (2018) GILs and NEPC (2013) Groundwater HSLs	 Groundwater Investigation Levels (GILs) Default guideline values for freshwater and marine ecosystems at the 95% level of protection, except for the bio-accumulative metals cadmium and mercury, for which the 99% protection level was applied. Health-based Screening Levels (HSLs) The NEPC (2013) groundwater HSL-A & B thresholds for vapour intrusion in low - high density residential settings were applied to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. 		
	NHMRC (2022) Recreational Criteria	Recreational Criteria Where no criteria are available, the lowest value from the NHMRC (2022) Drinking Water Human health criteria (multiplied by a factor o 10) were used to present a recreational exposure scenario.		
	HEPA (2020) PFAS	Groundwater Investigation Levels for PFAS The PFAS National Environmental Management Plan (NEMP provides guideline values for PFAS compounds in aquation ecosystems.		

5.6 Soil Sampling

The soil sampling works conducted at the site are described in **Table 5-4**. Sampling locations are illustrated in **Figure 2**, **Appendix A**.

Table 5-4	Summary	of Soil	Sampling	Methodology

Activity/Item	Details
Fieldwork	Intrusive soil investigations were conducted on 25, 26 and 31 May 2023, and comprised fifteen locations. Ground Penetrating Radar (GPR) survey was performed prior intrusive soil sampling.
Investigation Method	Test bores (BH1 to BH5) were drilled using a drill rig, fitted with solid flight augers while (HA1 to HA4) advanced by a hand auger and (TP1 to TP6) were excavated using an excavator provided by the client. A denser sampling grid at locations (TP3, TP5, TP6 and BH1M) targeting UST and systematically grid based sampling divided to encompass accessible site areas at the remaining sampling locations Borehole details are presented in the detailed logs attached in Appendix E .
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017.
Soil Sampling	Soil samples were collected using a dry grab method (the sampler wearing unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent- rinsed glass jars, snap-lock, plastic bags or jars with a Teflon free lid. Blind and split field duplicates were separated from the primary samples and placed into dedicated glass jars. At each location, aliquots of soil were placed into separate zip-lock bags for
Decontamination	laboratory asbestos analysis. Nitrile sampling gloves were replaced between each sampling location. Sampling equipment (i.e. metal trowel) was scrubbed and washed with a mixture of PFAS-free detergent solution (Alconox®) and potable water (1/20) until free of all residual materials, then rinsed with laboratory-supplied, purified water.

Activity/Item	Details
Management of Soil Cuttings	Soil cuttings were used to backfill the completed boreholes.
Sample Preservation and Transport	Samples were stored in an insulated chilled chest (with frozen ice packs), whilst on- site and in transit to the contracted laboratories.
	Soil samples were transported to SGS Australia Pty Ltd (SGS; the primary laboratory) and split (inter-laboratory) soil field duplicates were submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory) under strict chain-of-custody (COC) conditions. Signed COC certificates and sample receipt advice (SRA) were provided by SGS and Envirolab for confirmation purposes (Appendix G).
Laboratory Analysis and Quality Control	Soil samples were analysed by SGS and Envirolab for the potential contaminants. All samples were analysed within the required holding period, as documented in the corresponding laboratory reports (Appendices H and I).
	In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared trip spike soil sample and a laboratory-prepared trip blank soil sample, all analysed by SGS.

5.7 Groundwater Sampling

The groundwater sampling works are described in **Table 5-5**. The monitoring well location is illustrated in **Figure 2**, **Appendix A**.

Activity/Item	Details
Fieldwork	Three groundwater monitoring wells were installed on 25 and 26 May 2023.
	A single GME was completed on 31 May 2023 at the three newly installed wells (BH1M, BH2M and BH3M).
Well Construction	Well construction was in general accordance with the standards described in NUDLC (2020) and involved the following:
	 Ø50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing;
	 Base and top of each well was sealed with a uPVC cap;
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval;
	 Granular bentonite was applied above annular filter to seal the screened interval; Cuttings backfilled to just below ground level; and
	 Well completion comprised of a stickup of 1 m above ground level and a plastic J-cap closing the well
Well Development	Well development was conducted at the new wells, following installation. This involved agitation within the full length of the water column using a, Poly (PFAS-free) disposable bailer, followed by removal of water and accumulated sediment.
Well Survey	Wellhead elevations for the new monitoring wells BH1M, BH2M and BH3M were surveyed by EI after well installation.
Well Gauging	Monitoring wells were gauged to determine standing water levels (SWLs) prior to groundwater sampling. Gauging was conducted with a water/oil interface probe.
Well Purging and Field Testing	The measurement of water quality parameters was conducted repeatedly during purging and the details were recorded onto field data sheets, until water quality parameters stabilised. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC), temperature, oxidation-reduction potential (ORP) and pH of the purged water were also recorded during well purging. Field test results are summarised in Table 7-3. Refer to Appendix F for all field data sheets.

Table 5-5 Summary of Groundwater Sampling Methodology

Activity/Item	Details	
Groundwater Sampling	Groundwater samples were collected using a peristaltic low flow pump. Water was continuously measured for five parameters (Temperature, EC, ORP, DO, pH). Once three consecutive field measurements were recorded for purged water to within \pm 10% for DO, \pm 3% for EC, \pm 0.2 units for pH, \pm 0.2° for temperature and \pm 20 mV for ORP, this was considered to indicate that representative groundwater quality had been achieved and final physio-chemical measurements were recorded. Groundwater samples were then collected from the low flow sampling pump discharge point.	
Decontamination Procedure	The water level probe was washed in a solution of PFAS-free detergent solution (Alconox®), and potable water (1/20) until free of all residual materials, then rinsed with laboratory-supplied, purified water.	
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1mL); and one, PFAS bottle container. Samples for metals analysis were field-filtered using 0.45 µm pore-size membranes. All containers were filled with sample to the brim then capped and stored in insulated chests (containing ice bricks), until completion of the fieldwork and during sample transit to the laboratory. 	
Sample Transport	After sampling, the ice brick filled chests were transported to the laboratories using strict COC procedures. SRA was provided by the laboratory to document sample condition upon receipt. Copies of the SRA and COC certificates are presented in Appendix G .	
Laboratory Analysis and Quality Control	Groundwater samples were analysed by SGS and Envirolab for the selected contaminants. In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised a blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared, trip spike water sample and a laboratory-prepared, trip blank water sample, all tested by SGS.	

6. Data Quality Assessment

The assessment of data quality is defined as the scientific and statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this DSI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures. The findings are summarised in **Table 6-1** and discussed in detail in **Appendix I**.

In summary, the overall quality of the analytical data from this DSI was considered to be of an acceptable standard for interpretive use and preparation of an updated CSM.

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)
Preliminaries	DQO established	Yes	See Sections 5.2 and 5.3
Field Work	Suitable documentation of fieldwork observations including borehole logs, field notes.	Yes	See Appendices E and F
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Part	See Section 5.4
	All media sampled and duplicates collected	Yes	See Appendix G
	Use of approved and appropriate sampling methods (soil, groundwater)	Yes	See Sections 5.6 and 5.7
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See Sections 5.6 and 5.7
	Appropriate field rinsate and trip blanks taken	Yes	See Appendix G
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See Appendix G
Laboratory	Sample holding times within acceptable limits	Yes	See Appendices H , I, J
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See Appendices H , I, J
	LOR/PQL low enough to meet adopted criteria	Yes	See Appendices H , I, J
	Laboratory blanks	Yes	See Appendices H , I, J
	Laboratory duplicates	Yes	See Appendices H , I, J
	Matrix spikes	Yes	See Appendices H, I , J
	Surrogates (or System Monitoring Compounds)	Yes	See Appendices H , I, J
	Analytical results for replicated samples,	Yes	See Appendices H, I

 Table 6-1
 Quality Control Process

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)
	including field and laboratory duplicates and inter-laboratory duplicates, expressed as RPD		J
	Checking for the occurrence of apparently unusual or anomalous results (e.g. laboratory results that appear to be inconsistent with field observations or measurements)	Yes	See Appendices B, E, F
Reporting	Report reviewed by senior staff to confirm project meets NSW EPA guidelines and objectives	Yes	See Document Control

7. Results

7.1 Soil Field Results

7.1.1 Sub-Surface Conditions

The lithology encountered, during the drilling of the test boreholes was generalised as a layer of silty clay fill (thickness ranged between 0.1m to 0.8m), overlying residual silty clay, clay and sand (up to 2.63 mBGL) over sandstone and shale bedrock.

More details encountered during the soil investigation are provided in **Table 7-1** and borehole logs are presented in **Appendix E**.

Layer	Description	Minimum and Maximum Depth (mBGL)
Fill	Silty CLAY; low to medium plasticity, dark brown, brown, grey mottled orange and red, with rootlets, brick fragments and trace of sub-angular to angular gravels, no odour. Moderate sulfur odour was detected at TP3 and BH1M.	0.0 – 0.8
Residual	CLAY, medium to high plasticity, brown mottled pale grey/ orange mottled red, moist, no odour. Silty CLAY; low to medium plasticity, brown mottled pale grey/ orange red with mottled pale grey with fine to medium ironstone, moist. Sand; fine to medium grained, grey.	0.8 – 2.62
Bedrock	Sandstone; fine to medium grained, pale grey to brown/ orange with iron staining, siltstone laminations, Shale; dark grey.	2.62 – 25.22

 Table 7-1
 Generalised Sub-Surface Profile

Note:

+ Termination depth of deepest borehole.

7.1.2 Ground Penetrating Radar (GPR) and findings

A Ground Penetrating Radar (GPR) was conducted on 25 May 2023. Site was surveyed targeting the underground storage tank locate at 19 Hope Street. No underground tank was located within the surveyed area.

7.1.3 Field Observations

Soil samples were collected from the test bores at various depths ranging between 0.2-1.3 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- No suspicious odours were detected in any of the borehole locations with an exception of moderate sulfur odour at TP3;
- No soil staining was observed in any of the examined soils;
- No fragments of potential ACM were observed in any of the drilled/examined soils;
- No ash was observed in any of the examined soils;
- Bricks were observed during drilling at locationsTP1, BH1M, BH3M, BH4 and BH5;

7.2 Groundwater Field Results

7.2.1 Monitoring Well Construction

Three groundwater monitoring wells (BH1M, BH2M and BH3M) were installed on 25 and 26 May 2023. Construction details for the installed groundwater monitoring are summarised in **Table 7-2**.

Table 7-2 Monitoring wen construction Details					
Well ID	Well Depth (mBGL)	Groundwater Level After Well Development (mAHD)	Well Stick-up (mBGL)	Screen Interval (mBGL)	Lithology Screened
BH1M	16	9.60	1	9.05 - 15.05	Sandstone
BH2M	16	12.31	1	9 - 15	Sandstone shale laminations and shale
BH3M	16	11.64	1	9 - 15	Sandstone shale

Table 7-2 Monitoring Well Construction Details

7.2.2 Field Observations

A GME was conducted on 31 May 2023. Field data were recorded before sampling, as presented in **Table 7-3**. Field data sheets are attached in **Appendix F**. Samples were evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- Groundwater was found to be pale (clear) in colour, with low turbidity;
- No suspicious odours were detected in any of the groundwater wells;
- No sheen was observed on the sampled groundwater; and
- Groundwater conditions were slightly acidic (pH: 5.4 to 6.4) and fresh to brackish (EC: 254-2,921 µS/cm) in regards to water salinity.

Well	SWL (mBTOC ¹)	DO (mg/ L)	рН*	EC (μS/cm)	Temperat ure (°C)	ORP ² (mV)
BH1 M	2.88	0.15	12.69 (6.4)	1,673	19.82	-79.3
BH2 M	4.40	0.67	12.49 (5.9)	2,921	20.33	-69.6
BH3 M	5.29	0.26	11.36 (5.4)	254	19.58	-9.1

Table 7-3Groundwater Field Data

Notes:

¹ mBTOC – meters below top of casing.

² ORP readings were adjusted to Standard Hydrogen Electrode by adding field electrode potential (205mV).

* 12.69 Field measurement faulty due to equipment, pH data provide by the laboratory refer to Table 2 - Appendix B...

7.3 Laboratory Analytical Results

7.3.1 Soil Analytical Results

Summary of the soil analytical results is presented in **Table 7-4**. Detailed tabulation is presented in **Table 1**, **Appendix B**.

The concentrations of the potential contaminants in soil samples were below the adopted GILs, with the following exception of Asbestos in BH3M_0.2-0.3.

Detections of metals, PAHs (Benzo(a)pyrene, Carcinogenic PAHs as B(a)P and Total PAHs, TRH – F3 and PFAS were reported at low levels. No exceedance of the criteria observed.

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs
Priority Metals				
21	Arsenic	3	11	None
21	Cadmium	<0.3	<0.3	None
21	Chromium (Total)	8	38	None
21	Copper	1.7	35	None
21	Lead	10	130	None
21	Mercury	<0.05	0.6	None
21	Nickel	1.3	41	None
21	Zinc	7.6	140	None
РАН				
21	Naphthalene	<0.1	<0.1	None
21	Benzo(a)pyrene	<0.1	0.4	None
21	Carcinogenic PAH (as B(a)P TEQ)	<0.3	0.6	None
21	Total PAH	<0.8	2.6	None
BTEX				
21	Benzene	<0.1	<0.1	None
21	Toluene	<0.1	<0.1	None
21	Ethyl benzene	<0.1	<0.1	None
21	Xylenes (Total)	<0.3	<0.3	None
TRH				
21	TRH - F1	<25	<25	None
21	TRH - F2	<25	<25	None
21	TRH - F3	<90	150	None
21	TRH - F4	<120	<120	None
PFAS				
7	PFOA	<0.0008	<0.0008	None
7	PFOS	<0.0016	0.0024	None

 Table 7-4
 Summary of Soil Analytical Results

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SIL
7	PFOS + PFHxS	<0.0016	0.0024	None
VOCs				
17	Chloroform (THM)	<0.1	<0.1	None
17	Bromodichloromethane (THM)	<0.1	<0.1	None
17	Dibromochloromethane (THM)	<0.1	<0.1	None
17	Isopropylbenzene (Cumene)	<0.1	<0.1	None
17	1,2,4-trimethylbenzene	<0.1	<0.1	None
17	Trichloroethene (TCE)	<0.1	<0.1	None
17	cis-1,2-dichloroethene	<0.1	<0.1	None
17	trans-1,2- dichloroethene	<0.1	<0.1	None
17	Total VOC	<24	<24	None
Pesticides				
21	OCP	<1	<1	None
21	OPP	<1	<1	None
РСВ				
21	Total PCB	<1	<1	None
Phenols				
21	Phenols	<0.5	<0.5	None
Cyanide				
21	Cyanide	<0.5	<0.5	None
Asbestos				
21	Asbestos	Detected	Detected	BH3M_0.2-0.3 0.032 %/%

7.3.2 Groundwater Analytical Results

Summary of the soil analytical results is presented in **Table 7-5**. Detailed tabulation of the groundwater analytical results, showing the concentrations for individual samples alongside the adopted GILs, is presented in **Table 2**, **Appendix B**.

The concentrations of the potential contaminants in groundwater samples were below the adopted GILs, with the following exception of:

Dissolved metal aluminium (75 µg/L) at BH1M, (170 µg/L) at BH2M and (69 µg/L) at BH3M, cooper (5 µg/L) at BH1M and (2 µg/L) at BH2M, nickel (31 µg/L) at BH1M and (64 µg/L) at BH2M and zinc (99 µg/L) at BH1M, (420 µg/L) at BH2M and (14 µg/L) at BH3M – exceedance of the ecological criteria for fresh waters;

 Total recoverable hydrocarbons (TRH – F3) (980 µg/L) at BH1M, exceedance of the ecological criteria for fresh waters;

No other exceedances of GILs were reported.

Detections of VOCs in well BH1M, BH2M and BH3M were observed.

Table 7-5 Summary of Groundwater Analytical Results

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs
Priority Metals				
3	Aluminium	69	170	ANZG (2018): 55 µg/L BH1M (75 µg/L) BH2M (170 µg/L) BH3M (6 9µg/L)
3	Arsenic	<1	1	None
3	Cadmium	<0.1	0.2	None
3	Chromium (Total)	<1	1	None
3	Copper	<1	5	ANZG (2018): 1.4 μg/L BH1M (5 μg/L) BH2M (2 μg/L)
3	Lead	<1	<1	None
3	Mercury	<0.01	<0.01	None
3	Nickel	7	64	ANZG (2018): 11 µg/L BH1M (31 µg/L) BH2M (64 µg/L)
3	Zinc	14	420	ANZG (2018): 8 μg/L BH1M (99 μg/L) BH2M (420 μg/L) BH3M (14 μg/L)
РАН				
3	Naphthalene	<0.1	<0.1	None
3	Benzo(a)pyrene	<0.1	<0.1	None
3	Total PAH	<1	<1	None
BTEX				
3	Benzene	<0.5	<0.5	None
3	Toluene	<0.5	<0.5	None
3	Ethyl benzene	<0.5	<0.5	None
3	o/p-Xylene	<1	<1	None
3	m-Xylene	<0.5	<0.5	None
TRH				
3	TRH - F1	<50	<50	None
3	TRH - F2	<60	<60	None
3	TRH - F3	<500	980	ANZG (2018): 500 µg/L BH1M (980 µg/L)

Numbe Sample	er of Primary es	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs
3		TRH - F4	<500	<500	None
PFAS					
3	PFOA		<0.002	<0.002	None
3	PFOS		<0.002	<0.002	None
VOCs					
3		Chloroform (THM)	0.6	58	None
3		Bromodichloromethane (THM)	<0.5	8.4	None
3		Dibromochloromethane (THM)	<0.5	1.6	None
3		Isopropylbenzene (Cumene)	<0.5	<0.5	None
3		1,2,4-trimethylbenzene	<0.5	<0.5	None
3		Trichloroethene (TCE)	<0.5	<0.5	None
3		cis-1,2-dichloroethene	<0.5	<0.5	None
3		trans-1,2-dichloroethene	<0.5	<0.5	None
3		Total VOC	<10	68	None
Other	Parameters				
3		Total Phenols	<0.05	<0.05	None
3		Total Cyanide	<0.004	<0.004	None
3		рН	5.4	6.4	None
3		Hardness mg CaCO3/L	13	340	None
3		Turbidity	5.3	39	None

8. Site Characterisation

8.1 Soil Impacts

The general site geology encountered was a layer of silty clay fill (thickness ranged between 0.1m to 0.8m), overlying residual silty clay, clay and sand (up to 2.63 mBGL) over sandstone and shale bedrock.

Based on **Table 1**, **Appendix B**, fill and natural soil samples analysed during this investigation were found to be below the human health and ecologic soil criteria for all samples, except the following:

 Asbestos at BH3 (depths between 0.2-0.3 mBGL, at least), exceeding the criteria and warranting remediation prior excavation works or during excavation works, which could be conducted following demolition as part of the waste classification of soils for off-site disposal.

8.2 Groundwater Impacts

During the GME on 31 May 2023 depth to water readings ranged from 2.88 to 5.29 mBGL. Groundwater flow direction was anticipated to be flowing in a southern direction, towards the Parramatta River based on the local topography and surrounding land features. Groundwater flow direction will be characterised during data gap assessment. Local groundwater conditions were slightly acidic (pH: 5.4 to 6.4) and fresh to brackish (EC: 254-2921 μ S/cm) in regards to water salinity.

The laboratory analytical results for the three representative groundwater samples were found to comply with the adopted GILs, except for dissolved metal aluminium at BH1M, at BH2M and BH3M, copper at BH1M and BH2M, nickel at BH1M and at BH2M and zinc at BH1M, at BH2M and at BH3M.

Aluminium, copper, nickel and zinc were detected in groundwater above the adopted GIL. However, these metal exceedances are considered to be representative of background groundwater conditions (particularly given the local industrial settings of the site and surrounding areas), and is considered to present a low risk to the environment.

Elevated concentrations of TRH – F3 (BH1M: 980 μ g/L) identified during the GME. BH1M was located essentially downgradient from the former USTs and associated infrastructure.

9. Conclusion

The property located at 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW was the subject of a DSI, conducted in order to assess the nature and degree of onsite contamination. The key findings of this DSI were as follows:

- During the investigation, site is currently occupied by four residential properties and two vacant lots.
- The general site geology encountered was a layer of silty clay fill (thickness ranged between 0.1m to 0.8m), overlying residual silty clay, clay and sand (up to 2.63 mBGL) over sandstone and shale bedrock.
- Contaminant concentrations in representative fill and natural soil samples were found to be below the adopted human health and ecological criteria applicable to Residential settings with accessible soils, with the following exception:
 - Asbestos at BH3 (depths between 0.2-0.3 mBGL, at least), exceeding the criteria and warranting remediation prior excavation works or during excavation works, which could be conducted following demolition as part of the waste classification of soils for off-site disposal.
- During the GME on 31 May 2023 depth to water readings ranged from 2.88 to 5.29 mBGL. Groundwater flow direction was anticipated to be flowing in a southern direction, towards the Parramatta River based local topography and surrounding land features.. Groundwater flow direction will be further characterized during data gap assessment. Local groundwater conditions were slightly acidic (pH: 5.4 to 6.4) and fresh to brackish (EC: 254-2,921µS/cm) in regards to water salinity.
- The laboratory analytical results for the three representative groundwater samples were found to comply with the adopted GILs, except for dissolved metal aluminium at BH1M, at BH2M and BH3M, cooper at BH1M and BH2M, nickel at BH1M and at BH2M and zinc at BH1M, at BH2M and at BH3M. Aluminium, copper, nickel and zinc were detected in groundwater above the adopted GIL. These metal exceedances are considered to be representative of background groundwater conditions (particularly given the local industrial settings of the site and surrounding areas), and is considered to present a low risk to the environment.
- Elevated concentrations of TRH (F3) at BH1M (980µg/L) identified during the GME. BH1M is located on the southern portion of the site and in proximity to the site boundary as such further assessment (monitoring) of local groundwater quality was warranted to further access the extent of the recorded impacts and assess the potential for offsite migration.
- The site can be made suitable for the potential future site development, provided the recommendations detailed in **Section 10** are implemented

Based on the findings obtained from this DSI, and with consideration of El's *Statement of Limitations* (**Section 11**), El consider the site can be made suitable for the proposed re zoning, given the recommendations detailed in **Section 10** are implemented.

10. Recommendations

El provides the following recommendations in relation to the proposed development:

- Before commencement of demolition works, a Hazardous Materials Survey (HMS) should be completed for the existing building fabrics by a suitably qualified consultant.
 - Following removal, an asbestos clearance inspection and certificate should be completed by a suitably qualified professional (SafeWork NSW Licensed Asbestos Assessor), if identified by the HMS.
- Additional intrusive investigation to close data gaps remaining at the subject site, including:
 - Targeted additional GPR scanning following the removal of the existing shipping containers to locate UST targeting the area between TP2, TP5 and TP6;
 - Increasing soil sampling coverage to achieve soil characterisation within the footprint of the current building located at the western portion of the site(when accessible); and
 - Given the historical storage of hydrocarbons onsite (former Skillco), further assessment (monitoring) of the local groundwater quality was warranted.. Additional Groundwater investigation targeting exceedances, priority metals (Aluminium, copper, nickel and zinc) and TRH. All monitoring wells are to be surveyed to determine the groundwater flow directions.
- Delineation of the vertical and lateral extent of any detected soil impacts resulting from the presence of asbestos at locations (BH3);
- Preparation of an asbestos management plan (AMP) for the site, outlining the requirements for management of ACM building materials and asbestos-contaminated (fill) soil.

El emphasise that these recommendations can be managed through the development application process.

11. Statement of Limitations

This report has been prepared for the exclusive use of Constant 26 Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with Constant 26 Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, NSW EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

EI's assessment is necessarily based upon the results of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the project proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for Constant 26 Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

References

ADE (2020) Phase I Preliminary Site Investigation, 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW, Ref. MPR-02-18691| PSI.v1f, dated 15 December 2020.

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, New South Wales Department of Environment and Conservation, DEC 2007/144, June 2007.

EnRisk (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs,* Environmental Risk Services Pty Ltd, Environment Protection Authority of New South Wales, 25 February 2016.

HEPA (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

NHMRC (2022) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.7, January 2022.

NSW (2021) State Environmental Planning Policy (Resilience and Hazards) (2021), last modified 2 March 2022.

NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, October 2017.

NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

NSW EPA (2022) *Sampling Design Part 1 - Application*, Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3915, August 2022.

NUDLC (2012) *Minimum Construction Requirements for Water Bores in Australia* (4rd Edition). National Uniform Drillers Licensing Committee 2011, February 2012.

USEPA (2000a) *Guidance for the Data Quality Objectives Process - EPA QA/G-4*, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.

USEPA (2006) *Data Quality Assessment: A Reviewers Guide - EPA QA/G-9R*, United States Environmental Protection Agency, Office of Environmental Information, EPA/240/B-06/002, February 2006.

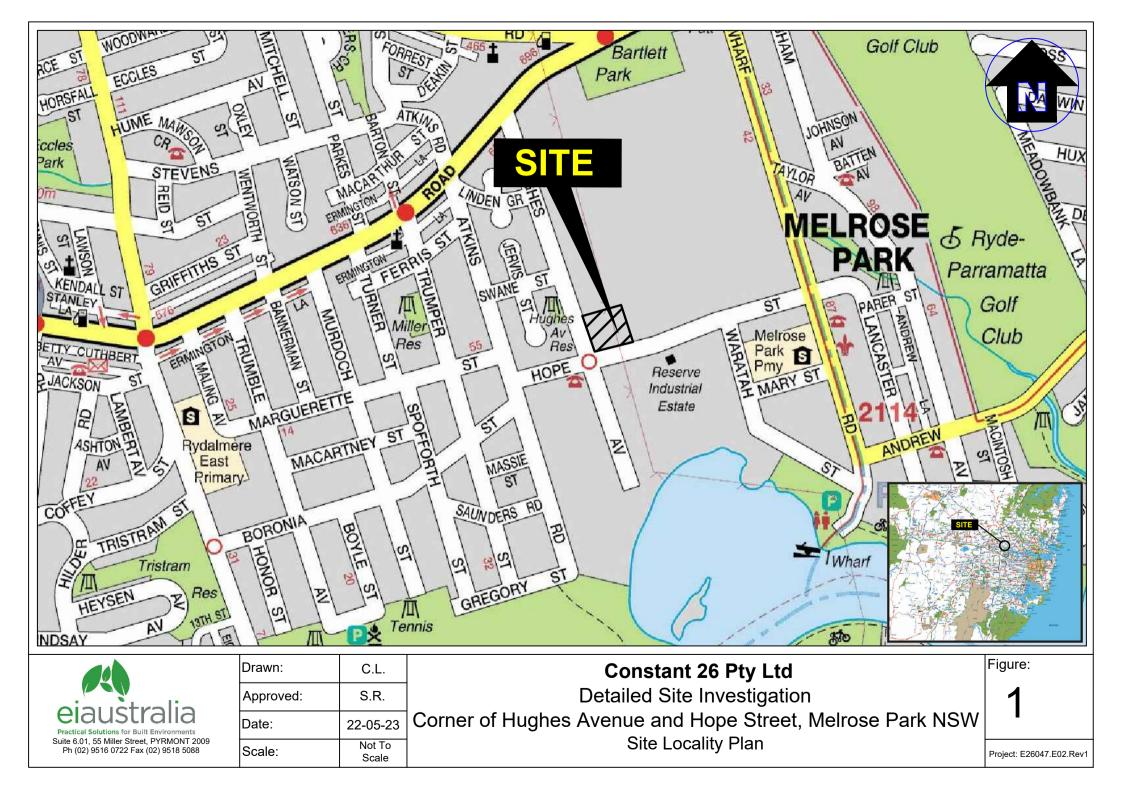
Vic EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority for the State Government of Victoria, April 2000.

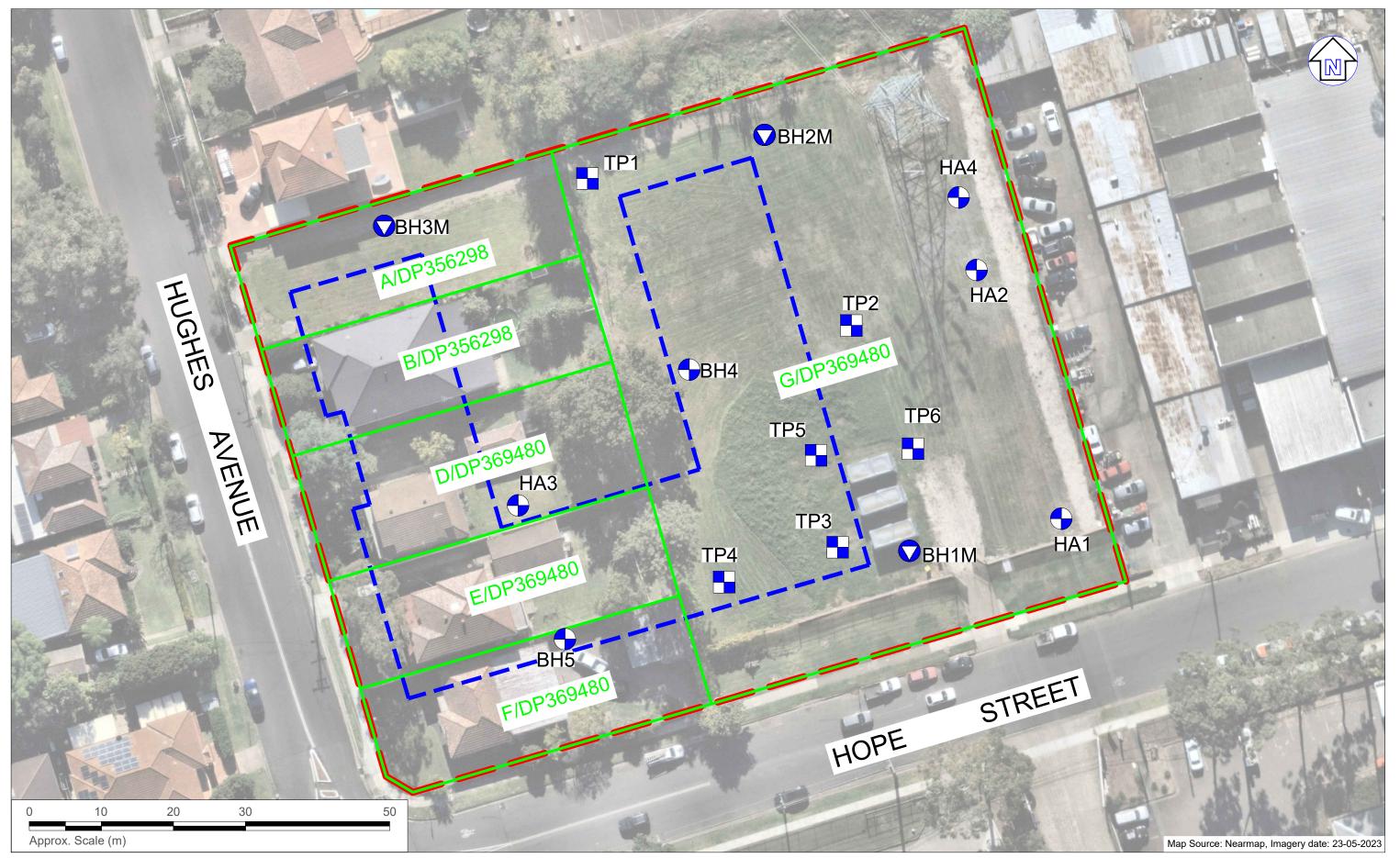
WADOH (2009 *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia,* Published by the Western Australian Department of Health.

eiaustralia

Abbreviations

ACM	Asbestos-Containing Materials	
AST B(a)P	Aboveground storage tank Benzo(a)Pyrene (a PAH compound)	
BH	Borehole	
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes	
COC	Chain of Custody	
CSM	Conceptual Site Model	
CVOC	Chlorinated Volatile Organic Compounds (a sub	-set of the VOC suite)
DO	Dissolved Oxygen	
DP	Deposited Plan	
DQO	Data Quality Objectives	
DSI	Detailed Site Investigation	
EC	electrical Conductivity	20)
F1 F2	C_6 - C_{10} TRH (less the sum of BTEX concentratio	
F2 F3	>C ₁₀ -C ₁₆ TRH (less the concentration of naphtha TRH >C16-C34	
F3 F4	TRH >C34-C40	
GIL	Groundwater Investigation Level	
GME	Groundwater Monitoring Event	
HIL	Health-based Investigation Level	
HSL	Health-based Screening Level	
LGA	Local Government Area	
LOR	Limit of Reporting (limit of reporting for respectiv	e laboratory method)
mAHD	Metres Australian Height Datum	
mBGL	Metres Below Ground Level	
mBTOC	Metres Below Top of Casing	
mg/L	Milligrams per Litre	
mV	Millivolts	
µg/L	Micrograms per Litre	
NATA	National Association of Testing Authorities, Austr	ralia
	National Environment Protection Council	
NEPM NSW	National Environment Protection Measure New South Wales	
NSW EPA	Environment Protection Authority (of New South	Wales)
OCP	Organochlorine Pesticides	Wales)
ODS	Ozone Depleting Substances	
OPP	Organophosphate Pesticides	
ORP	Oxidation-Reduction PotentialPAH	Polycyclic Aromatic
Hydrocarbons		
PĆB	Polychlorinated Biphenyls	
PFAS	Per- and Poly-Fluoroalkyl Substances	
PM	Priority Metal	
POEO	Protection of the Environment Operations	
рН	Potential Hydrogen (a measure of the acidity or	
PQL	Practical Quantitation Limit (limit of detection for	respective laboratory method)
PSH	Phase-Separated Hydrocarbons	
QA/QC	Quality Assurance / Quality Control	
RL	Reduced Level	
RPD	Relative Percentage Differences	
SAQP	Sampling and Analysis Quality Plan	
SIL SOP	Soil Investigation Level Standard Operating Procedure	
JUF	Stanuaru Operating Frotedure	


SRA	Sample Receipt Advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TEQ	Toxicity Equivalent Quotient
TPH	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit (of the mean)
USEPA	United States Environmental Protection Agency
UST	Underground storage tank
VOC	Volatile Organic Compounds (specific organic compounds which are volatile)



Appendix A – Figures

Figure 1 - Site Locality Plan

Figure 2 - Sampling Location Plan

LEGEND (All locations are approximate)

- Site boundary
- Proposed building footprint
- Lot boundary
- Test pit location
- Groundwater monitoring well location
 - Borehole location

Drawn:	C.L.	D
Approved:	S.R.	Corner of I
Date:	29-05-23	

Constant 26 Pty Ltd Detailed Site Investigation Hughes Avenue and Hope Street, Melrose Park NSW

Figure:

Project: E26047.E02.Rev1

2

Sampling Location Plan

Appendix B – Tables

- Table 1 Summary of Soil Analytical Results
- Table 2 Summary of Groundwater Analytical Results
- Table 3 Field QA/QC for Soil
- Table 4 Field QA/QC for Groundwater

Table 1 - Summary of So	il Analytical results																																					E2604	47.E02 - M	leirose Park				
						н	Heavy Metals			-			PAHs				BTEX					TRI				PFAS	-		_		_	VOC					Pestic	ces	PCBs			Asbestos		
Sample ID	Date of sampling	Material description	As	Cd	Cr(Tota	al) Cı	u Pi	b H	ig Ni	i Zn	Benzo(a)py rene	Carcinogenic PAHs as B(a)	Napitthalene	Total PAHs	Benzene	Toluene	Ethylbenzene	o-Xyle ne	m/p-Xy lene	Total Xylenes	F1	F2	F3	F4	PFOA	PFOS	PFOS + PFHxS	Chloroform (THM)	Isopropylbenzene (Cumene	1,2,4-trimethylbenzene	Trichloroethene (TCE)	cis-1,2-dichloroethene	trans-1,2-dichloroethene	Bromodichloromethane (TH	Dibromochloromethane (TH	Total VOC	OCPs	OPPs	Total	Present (Fibre Type)/ Abser	>7mm w/w%	<7mm w/w%	Asbestos in soli (>2mm to <7mm AF/FA) w/w%	AF/FA in >2mm to <7mm Sample (g)
El Investigation (2023)												0														1	1	1		1		1		3	÷.					-				
Fill BH1M_0.2-0.3	26/05/2023	Silty CLAY	8	<0.3	16	10	10 3	0 <0	0.05 4.2	2 47	<0.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<0.0008	<0.0016	<0.0016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	<0.001	<0.001	<0.00001
BH2M_0.2-0.3	26/05/2023	Silty CLAY	6	< 0.3	15	_				1 28	_	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<0.0008	< 0.0016	< 0.0016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	< 0.001		<0.00001
BH3M_0.2-0.3	26/05/2023	Silty CLAY	6	<0.3	16	6.9	.9 3	1 <0	0.05 4.5	5 49	<0.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<0.0008	< 0.0016	< 0.0016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Present (Chrysotile)	<0.01	0.032	0.032	0.144
BH4_0.2-0.3	26/05/2023	Silty CLAY	7	<0.3	17	16	16 13	30 0.	.62 4.4	4 14	<0.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<0.0008	< 0.0016	< 0.0016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	< 0.001	<0.001	<0.00001
BH5_0.2-0.3	26/05/2023	Silty CLAY	6	< 0.3	24	4	4 3	IO <0	0.05 2.4	4 13	<0.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<0.0008	0.0024	0.0024	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	< 0.001	< 0.001	<0.00001
TP1_0.2-0.3	26/05/2023	Silty CLAY	6	<0.3	-						-	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	<0.001		<0.00001
TP2_0.2-0.3	26/05/2023	Silty CLAY	8	< 0.3	28				.05 14		-	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	< 0.01	< 0.001		<0.00001
TP3_0.2-0.3 TP6_0.2-0.3	26/05/2023	Silty CLAY	11	< 0.3	-				0.05 1.7	7 35	-	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1			<25	<25 <25	<90 <90	<120 <120	<0.0008	< 0.0016		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	<0.001 <0.001		<0.00001
HA1_0.2-0.3	26/05/2023 26/05/2023	Silty CLAY Silty CLAY	3	<0.3	-				0.05 1.6	_		<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1		<0.3	<25	<25	<90	<120	<0.0008	0.0017 NA	0.0017 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent Absent	<0.01	< 0.001		<0.00001
HA2_0.2-0.3	31/05/2023	Silty CLAY	5	<0.3	38	_			0.05 41			<0.3	<0.1	<0.0	<0.1	<0.1	<0.1	<0.1		<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	<0.01	<0.001		<0.00001
HA3_0.2-0.3	31/05/2023	Silty CLAY	6	< 0.3	-					_		< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	NA	NA	NA	NA
HA4_0.2-0.3	31/05/2023	Silty CLAY	5	< 0.3	11			6 <0			-	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Absent	< 0.01	< 0.001		<0.00001
Natural												-	-	-												-	-	-			1										-			
BH1M_1.2-1.3	26/05/2023	Silty CLAY	6	<0.3	-					3 26	-		<0.1	<0.8	<0.1	<0.1		<0.1				<25	<90	<120	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	<1	<1	<1	NA	NA	NA		NA
BH2M_0.7-0.8	26/05/2023	Silty CLAY	6	<0.3	-				0.05 4.3		-		<0.1	<0.8	<0.1	<0.1	-	<0.1			<25	<25	150	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<24	<1	<1	<1	NA	NA	NA		NA
BH3M_0.7-0.8 BH4_0.7-0.8	26/05/2023	Silty CLAY	10	<0.3	-				0.05 1.3		-		<0.1	<0.8	<0.1	<0.1	<0.1	<0.1		<0.3	<25	<25 <25	<90 <90	<120 <120	NA NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	NA	NA	NA	NA	NA
BH5_0.7-0.8	26/05/2023	Silty CLAY Silty CLAY	6	<0.3	21	_			0.05 4.4				<0.1	2.6	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	NA	NA	NA		NA
TP1_0.7-0.8	26/05/2023	Silty CLAY	6	<0.3	-							<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	NA	NA	NA	NA	NA
TP2_0.7-0.8	26/05/2023	Silty CLAY	6	< 0.3	19				0.05 1.7		-	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	NA	NA	NA	NA	NA
TP4_0.7-0.8	26/05/2023	Silty CLAY	6	< 0.3	8.4	_			.08 8.8	_	-	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	NA	NA	NA	NA	NA
Statistical Analysis	Minimum concentration		3	<0.2	8	2	2 4	0 <0	0.05 1	8	<0.1	<0.2	<0.1	<0.8	-0.4	-0.4	-0.4	-0.4	-00	-0.0	-27	-25	-00	<120	<0.0008	<0.0016	<0.0016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24		- 21	- 21	Absent	<0.01	<0.001	<0.001	-0.00004
	Maximum concentration		11	<0.3	38				1.6 41			<0.3	0	3	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	150	<120	<0.0008	0.0024	0.0024	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<24	<1	<1	<1	Present	<0.01	0.032		0.144
	95% UCL		NC	NC	NC	NC	IC NO	C N	IC NC	C NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SILs	- Residential with garden / acce	assible soil	100	20	100	7,00	000 30	m 4	10 400	0 8,00	,	3		300																	0.02	0.08					240		1					
					Cr(VI) 3600)					_	-	-																		L		-			-		-						
	HIL D - Commercial		3000	900	Cr(VI)	240,0	,000	7.	30 6,00	400,0	00	40		4,000																	0.02	0.3	J				3600		7					
HSL - A/B (low densi Soil texture classific	ty residential) ation - Sand	0 m to <1 m 1 m to <2 m											3 NL	-	0.6 0.6	190 260	NL		45 70		50 85	130 280																						
HSL - A/B (low densi	ty residential)	0 m to <1 m 1 m to <2 m	-										6 NL	-	0.8	560 NL	NL NL		130 NL		60 10	330 NL																						
Soil texture classific	cation - Clay	2 m to <4 m 4 m +	1										NL NL 230	1	2	NL NL	NL NL		NL NI		180	NL NL																						
HSL - D (low density Soil texture classific	y residential)	0 m to <1 m	1										230		3	NL	NL		NL		260	NL																						
HSL - D (low density		1 m to <2 m 0 m to <1 m 1 m to <2 m											NL NL		3 4 6	NL	NL NL		NL		370 310 480	NL																						
Soil texture classific		2 m to <4 m											NL		9	NL	NL		NL		NL	NL																						
ESL/EIL	- urban residential and public o	4 m +	100	1	200	20	00 1,1	00	130	0 490	33		170	-	20 50	NL 85	NL 70				NL 180	NL 120	300	2800												_	180 DDT	180	1					
	imits - Residential parkland and			1			_			_		-										1,000	2500	10,000													DDT		ļ					
coarse grained soil texture ¹ - Table 1A(3)																				700	1,000	2500	10,000				-																	
	PFAS - HL - A PFAS - EL - Direct Exposure																								0.01 NR	0.1		-																
	PFAS - EL - Indirect Exposure																								NR	NR															1			
Non B	Asbestos contamination HSL onded / Friable Asbestos (%w/v	. A w) - Table 7																																						0.001				
Notes: All result	ts are recorded in mo/ko ((unless otherwise stated).													NA 1	Not Analyse	d' i.e. the sa	imple was	not analysed	or Not App	plicable (for	r TCLPs)																						
Hiahliah Hiahliah	ted values indicates conce ted values indicates conce	entration exceeds Human He entration exceeds ecological of criteria exceeded.	ealth Based S criteria.	oil Criteria	a.										NC NL 1	Not Calculate Not Limiting	ed" - The soil va		exceeds the				ore water p	phase cann	not dissolve	e any more	of the indivi	idual chemi	cal.															
Highlight Indicates	ted indicates the adopted s no recommended asses	criteria exceeded. ssment criteria are currently a	available or ap	pplicable.											ND NVA N	Not Detected	t sbestos																					1	10					
	stigation levels from Sche	edule B1 (table reference indi	licated) of the	National E	Environme	ental Prote	ection Meas	ure 1999 -	Amendment	2013.					F1 1	Fo obtain F1	subtract the	e sum of B	e divided by 3 TEX concent	rations from		10 fraction																	N.	alia				
HIL A NEPC 2	013 'HIL A' Health Based	Investigation Levels applicab	ble for resider	ntial with g	arden/ acc	cesible soi	oil.									Fo obtain F2 >C16-C34)		aphthalene	from the >C1	10-C16 frac	ction.																	ela	austr	alla				
		sed Screening Levels applica							s where							>C34-C40)				-1																								
residenti	ai occupation exists in the	e ground floor and there are n	no cai parks l	иниен - мр	vhiicanie (0	aceb soll	··· areas unity	r-							1 (Juarse Grai	ied soit valu	es were ap	oplied, as the	site soils w	were predo	minantly sa	nd in natur	ie.																				

Table 2 - Summary of Gro	oundwater Analytical Result	s																											E26047.	02_Melro	se Park							
						Metals						PAHs				BTEX				TF	RH		PF	FAS					VOC						Oth	er Paramete	rs	
Sample ID	Date of sampling	AI	As*	Cd	Cr*	Cu	РЬ	Hg	Ni	Zn	Benzo(a)py rene	Total PAHs	Naphthalene	Benze ne	Toluene	Ethylbenzene	o/p-Xylene	m-Xy lene	F1	F2	F3	F4	PFOS	PFOA	Chloroform (THM)	Isopropyl be nzene (Cumene)	1,2,4-trime thy lbenze ne	Trichloroethene (TCE)	cis-1,2-dichloroethene	trans-1,2-dichlor oe the ne	Bromodichloromethane (THM)	Dibromochloromethane (THM)	Total VOC	Total Cyanide	Total Phenois	ħ	Hardness mg CaCO3/L	Turbidity
	designed reglet 2013 TS C <thc< th=""> C C C</thc<>																																					
BH1M	31/05/2023		<1		<1	5							<0.1	0.10	0.1.0	-0.0	- 1	0.10				<500	< 0.002	0.002 58 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5														
BH3M	31/06/2023	170	<1	<0.2	<1	2	<1	<0.01	64	420	<0.1	<1	< 0.1	<0.5	<0.5	<0.5	<1	<0.5	<50	<60	<500	<500	< 0.002	0.002	2 28 <0.5 <0.5 <0.5 <0.5 2.7 0.6 31 <0.004 <0.05 5.9 340 39 2 0.6 <0.5													
Statistical Analysis		09	1	<0.1	1	< 1	<1	<0.01	/	14	<0.1	<1	<0.1	< 0.5	<0.5	<0.5	<1	<0.5	<50	<80	<500	<500	<0.002	0.002	0.8 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5													
	Concentration	69		-01	4	4	A	<0.01	7	14	<0.1	<1	<0.1	<0.5	<0.5	<0.5	- 21	<0.5	<50	<60	<500	<500	<0.002	0.000										5.3				
	Concentration	170	1	0.2	1	5	<1	<0.01	64	420	<0.1	<1	<0.1	< 0.5	<0.5	< 0.5	<1	< 0.5	<50	<60	<500	<500	<0.002	0.002	58													
GILs																																						
							0m to <1m						5	0.7	480	NL	NL	NL	50	280																		
HSLA - Low to his	gh density residential						1m to <2m						NL	1	NL	NL	NL	NL	90	NL	1																	
Soil texture cla	assification - Clay						2m to <4m						NL	2	NL	NL	NL	NL	150	NL																		
							4m+						NL	3	NL	NL	NL	NL	290	NL																		
	Fresh Water	55	24 (AsIII) 13 (AsV)	0.2	1 3 (Cr VI)	1.4	3.4	0.06 2	11	83	0.1 2		16	950	180	80	350	275	50	60	500	500	500 320															
ANZG (2018)	100	20		1,000 *	100	10.00	200	3,000*																														
PFAS NEPM (2020) 9	Interim Marine																						0.13	220														

Table 3 - QA/QC Results for Soil Samples

				TI	RH			BT	EX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborator	y Duplicate	•		•	•		•	•										
31/05/2023	HA2_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	3	<0.3	38	24	24	<0.05	41	71
31/05/2023	QD1	Intra-laboratory duplicate of HA2_0.2-0.3	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	31.0	19.0	25	<0.05	31.0	63
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.57	0.00	20.29	23.26	4.08	0.00	27.78	11.94
31/05/2023	HA1_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	3	<0.3	10	2	10	<0.05	2	8
31/05/2023	QD2	Intra-laboratory duplicate of HA1_0.2-0.3 <25 <90 <120 <0.1 <0.1 <0.3 4 <0.3										12.0	3.3	12	< 0.05	3	12	
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.57	0.00	18.18	44.44	18.18	0.00	51.16	46.15
Inter-laborator	y Duplicate		•	•	•		•	•										
31/05/2023	HA2_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	3	<0.3	38	24	24	<0.05	41	71
31/05/2023	QT1	Inter-laboratory duplicate of HA2_0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	7	<0.4	28	18	28	<0.1	17	47
		RPD	0.00	NA	NA	NA	NA	NA	NA	NA	80.00	NA	30.30	28.57	15.38	NA	82.76	40.68
31/05/2023	HA1_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	3	<0.3	10	2	10	<0.05	2	8
31/05/2023	QT2	Inter-laboratory duplicate of HA1_0.2-0.3	<25	<25	<90	<100	<0.2	<0.5	<1	<1	7	<0.4	21	4	12	<0.1	3	12
		RPD	0.00	0.00	0.00	NA	NA	NA	NA	NA	80.00	NA	70.97	62.30	18.18	NA	60.87	46.15
Trip Blank			•	•	•		•	•	•		•		•					
26/05/2023	Trip Blank	Soil	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
31/05/2023	Trip Blank	ık Soil <0.1 <0.1 <0.1 <0.3 -										-	-	-	-	-	-	-
Trip Spike																		
26/05/2023	Trip Spike	Soil	-	-	-	-	[96%]	[97%]	[100%]	-	-	-	-	-	-	-	-	-
31/05/2023	Trip Spike	Soil	-	-	-	-	[107%]	[90%]	[123%]	-	-	-	-	-	-	-	-	-
Rinsate Blanks	-			.00	.500	-500	-0.5	-0.5	-0.5	-4.5		-0.4			.4	-0.4		
31/05/2023	QR1	Equipment rinsate water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Note: All soil results are reported in mg/kg and water results are reported in µg/L.

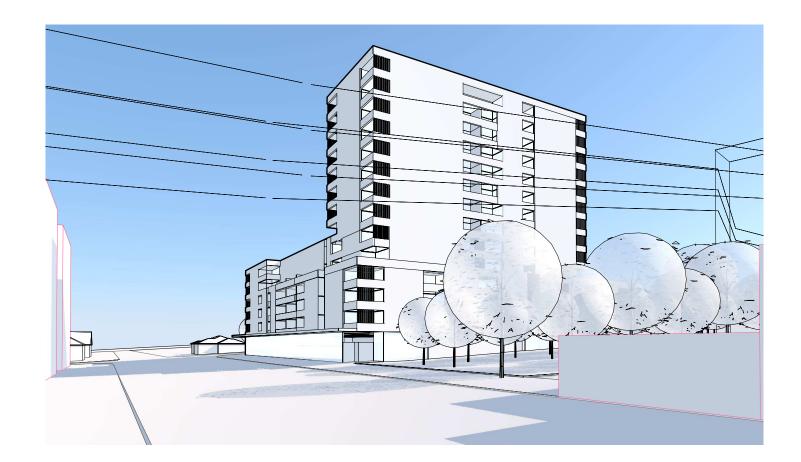
F1 = TRH C6-C10 less the sum of BTEX F2 = TRH >C10-C16 less naphthalene F3 = TRH >C16-C34 F4 = TRH >C34-C40

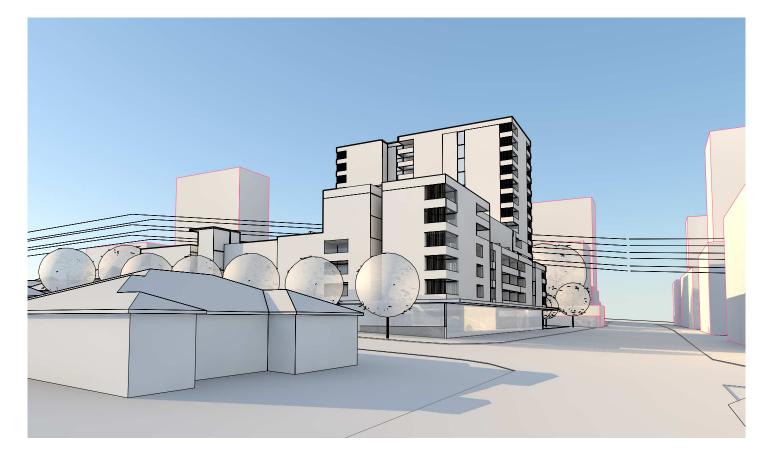
Table 4 - QA/QC Results for Groundwater Samples

				Т	RH			BT	EX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Inter-laborator	y Duplicate	-									•	•	•		•	•		
31/05/2023	GWBH1M	Primary Groundwater Sample	<50	<60	980.0	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	5	<1	<0.01	31	99
31/05/2023	QD1	Inter-laboratory duplicate of GWBH1M	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	0.1	<1	5	<1	<0.1	29	93
		RPD	0.00	0.00	78.05	0.00	0.00	0.00	0.00	NA	0.00	0.00	0.00	0.00	0.00	NA	6.67	6.25
Intra-laboratory	y Duplicate																	
31/05/2023	GWBH1M	Primary Groundwater Sample	<50	<60	980.0	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	5	<1	<0.01	31	99
31/05/2023	QT1	Inter-laboratory duplicate of GWBH1M	<10	<50	<100	<100	<1	<1	<1	-	-	-	-	-	-	-	-	-
	•	RPD	NA	NA	170.87	NA	NA	NA	NA	NA	-	-	-	-	-	-	-	-
Trip Blank																		
31/05/2023	Trip Blank	Water	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
Trip Spike																		
31/05/2023	Trip Spike	Water	-	-	-	-	[98%]	[100%]	[97%]	-	-	-	-	-	-	-	-	-

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Note: All water results are reported in µg/L.


F1 = TRH C6-C10 less the sum of BTEX F2 = TRH >C10-C16 less naphthalene F3 = TRH >C16-C34


F4 = TRH >C34-C40

Appendix C – Proposed Development

NOTES

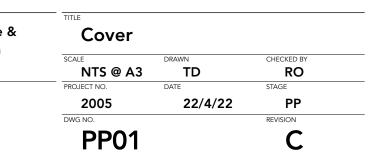
OLSSON ARCHITECTURE I URBAN PROJECTS

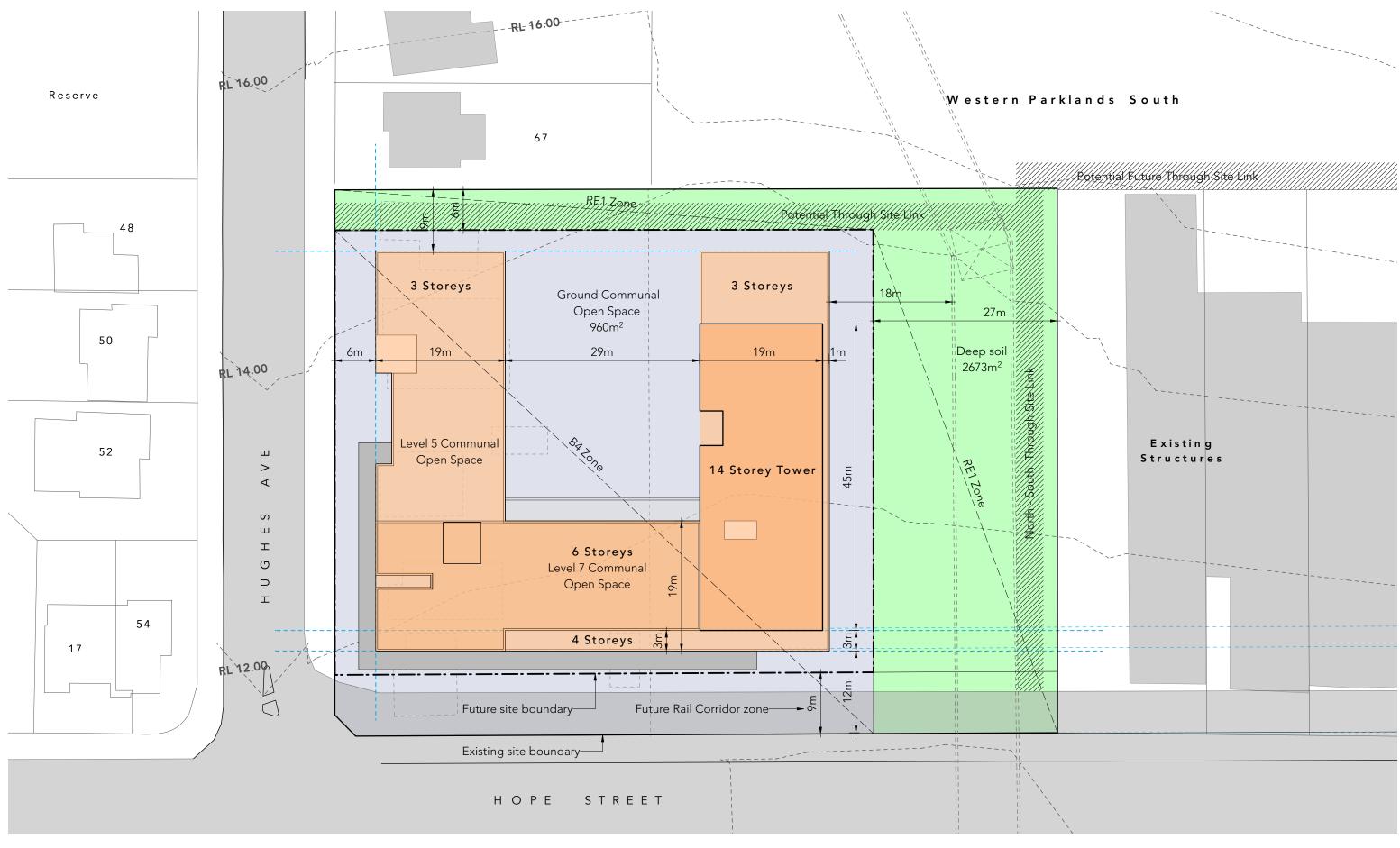
T 02 9281 0181 F 02 9281 3171 E info@olssonass Level 4 68-72 Wentworth Avenue Surry Hills NSW 2010 Russell Olsson Registered Architect 7079

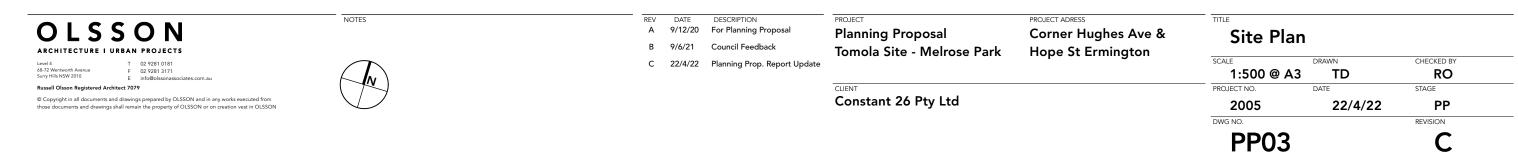
© Copyright in all documents and drawings prepared by OLSSON and in any works executed from those documents and drawings shall remain the property of OLSSON or on creation vest in OLSSON

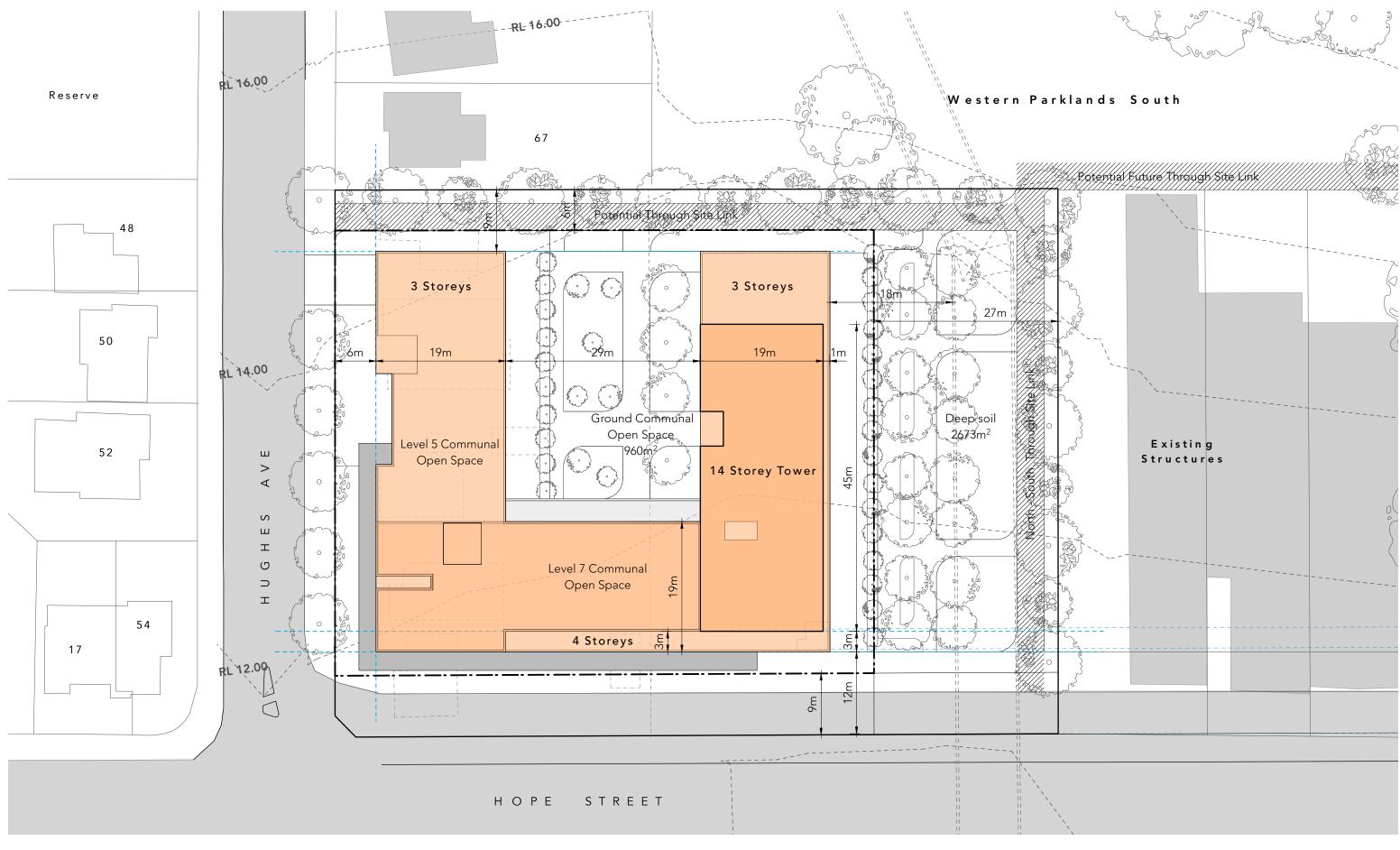
DATE REV

A 9/12/20 For Planning Proposal


DESCRIPTION


B 9/6/21 Council Feedback C 22/4/22 Planning Prop. Report Update

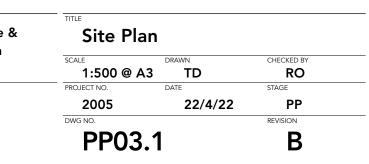

PROJECT **Planning Proposal** Tomola Site - Melrose Park

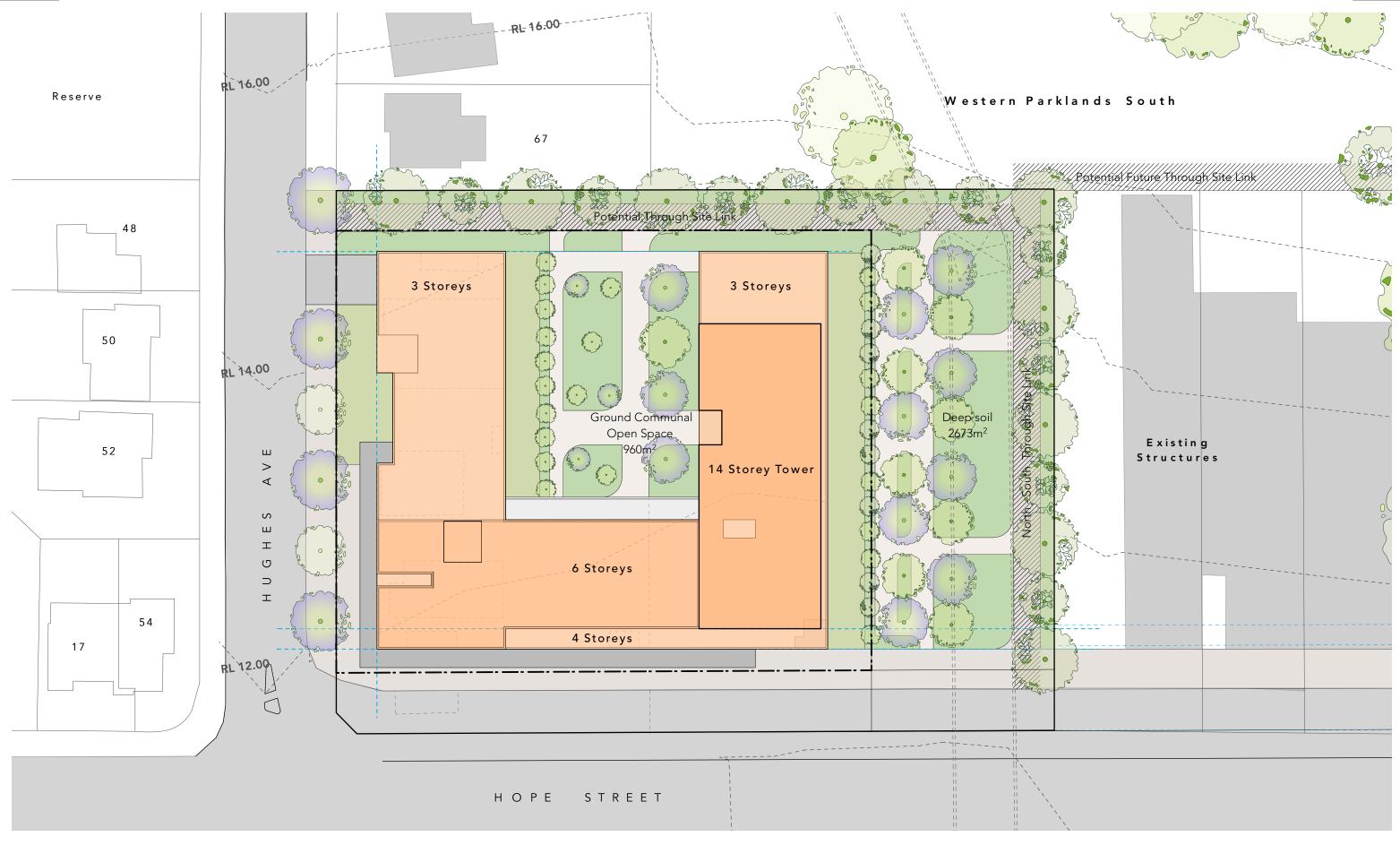

PROJECT ADRESS Corner Hughes Ave & Hope St Ermington

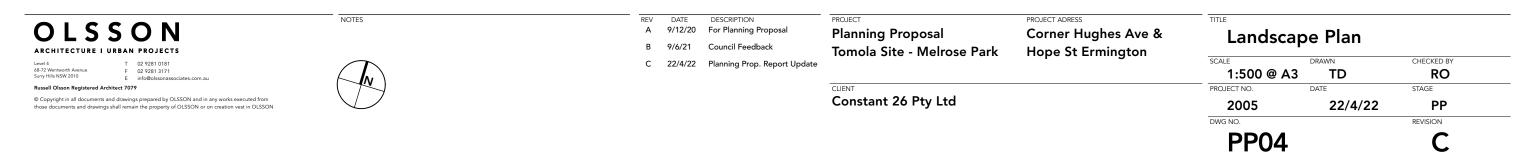
CLIENT Constant 26 Pty Ltd

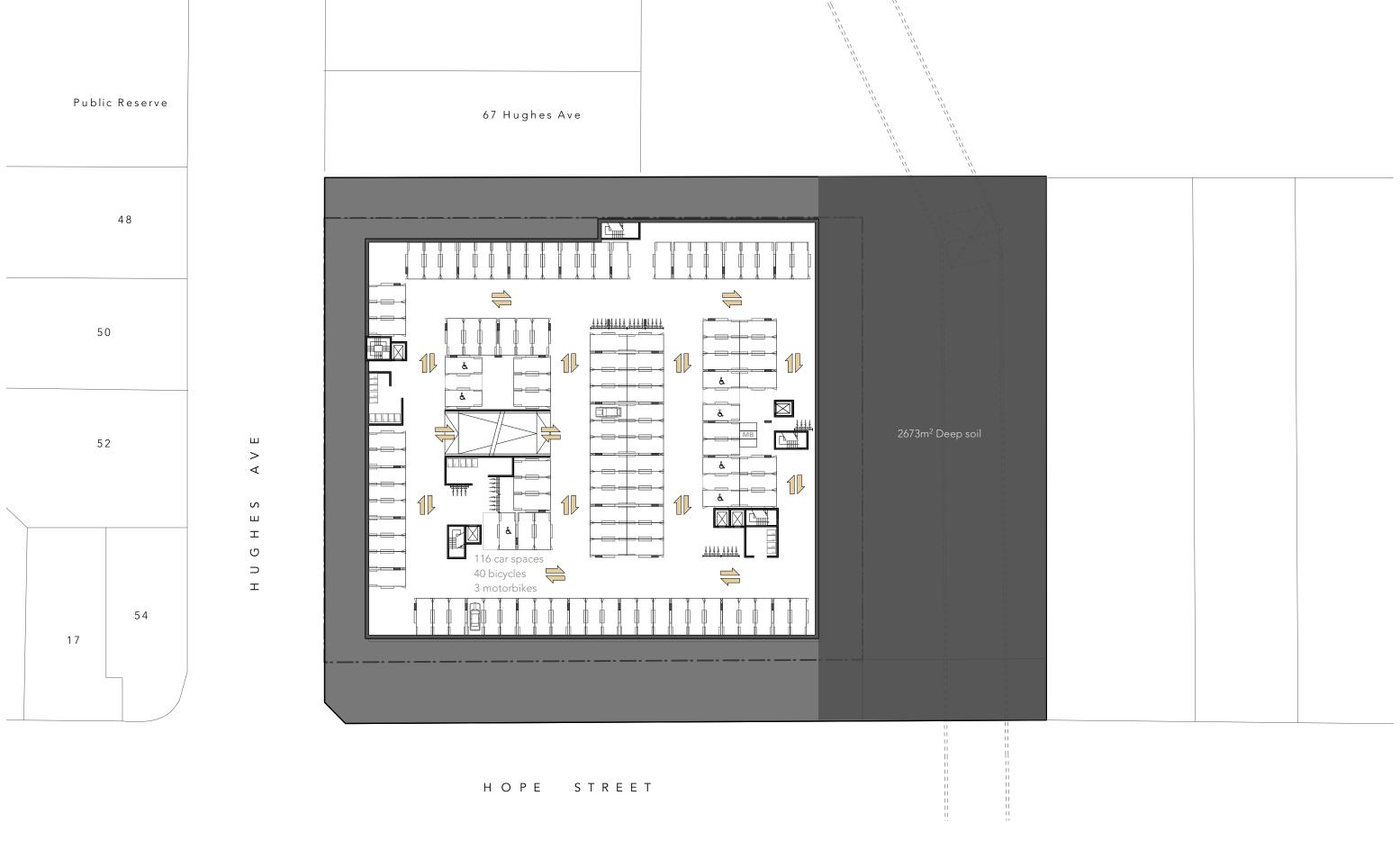
T 02 9281 0181 F 02 9281 3171 F info@olssonass Level 4 68-72 Wen Russell Olsson Registered Architect 7079

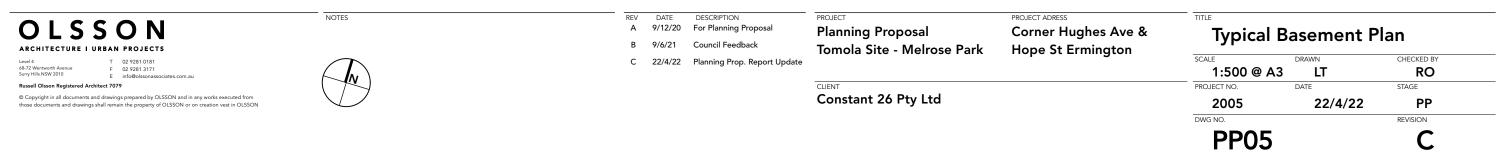
© Copyright in all documents and drawings prepared by OLSSON and in any works executed from those documents and drawings shall remain the property of OLSSON or on creation vest in OLSSON

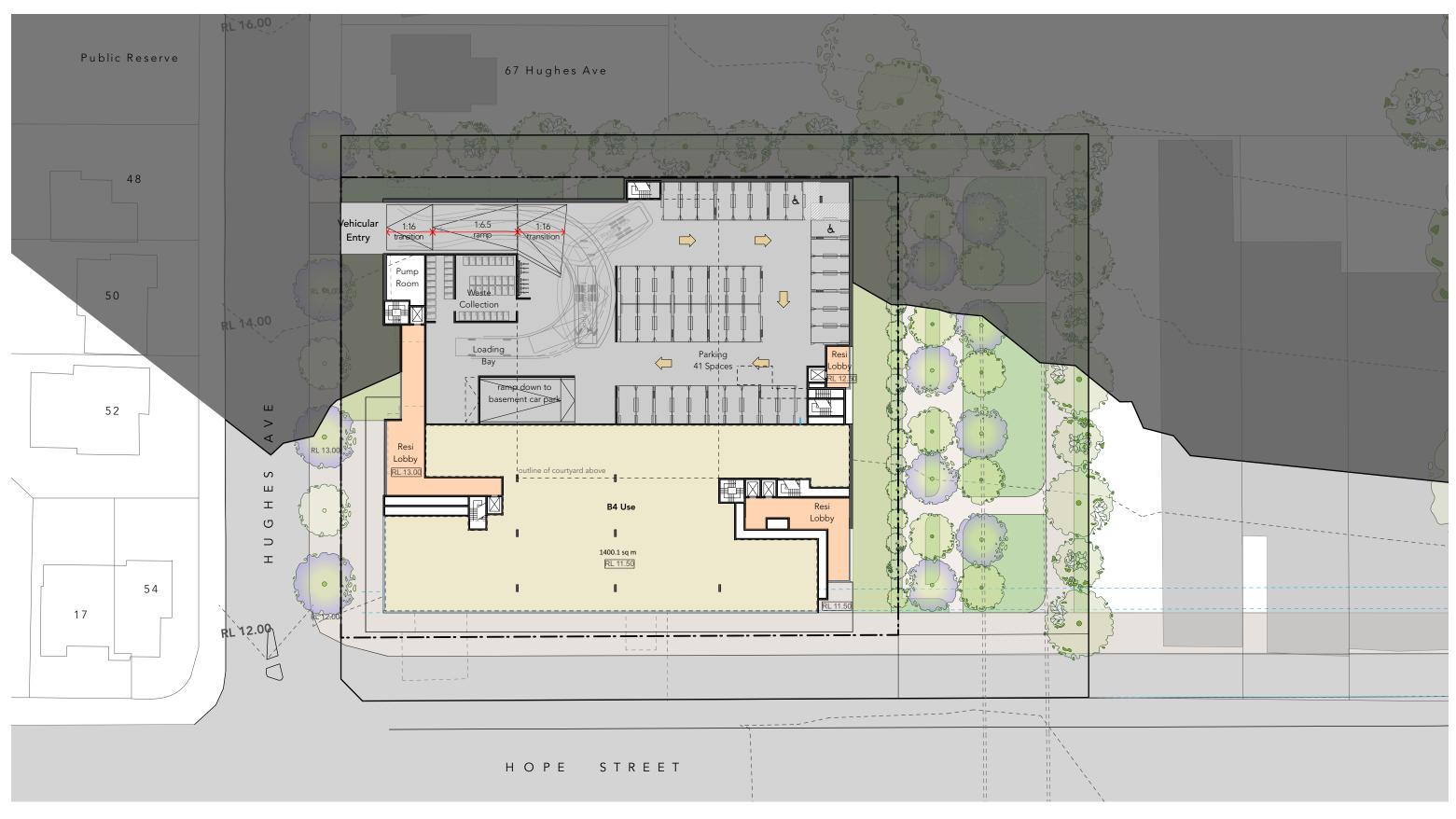

NOTES

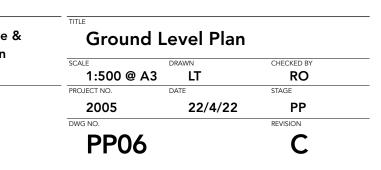

DATE DESCRIPTION 9/12/20 For Planning Proposal А B 22/4/22 Planning Prop. Report Update

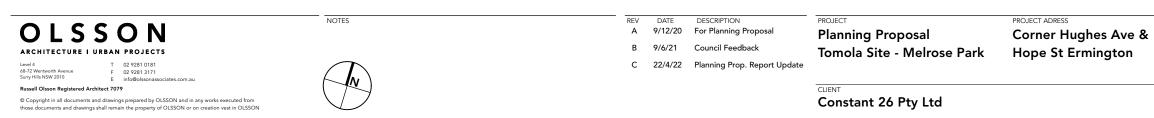

PROJECT **Planning Proposal** Tomola Site - Melrose Park

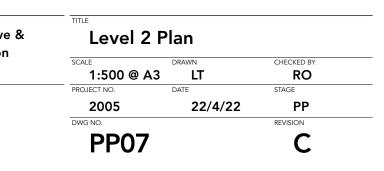

PROJECT ADRESS Corner Hughes Ave & Hope St Ermington

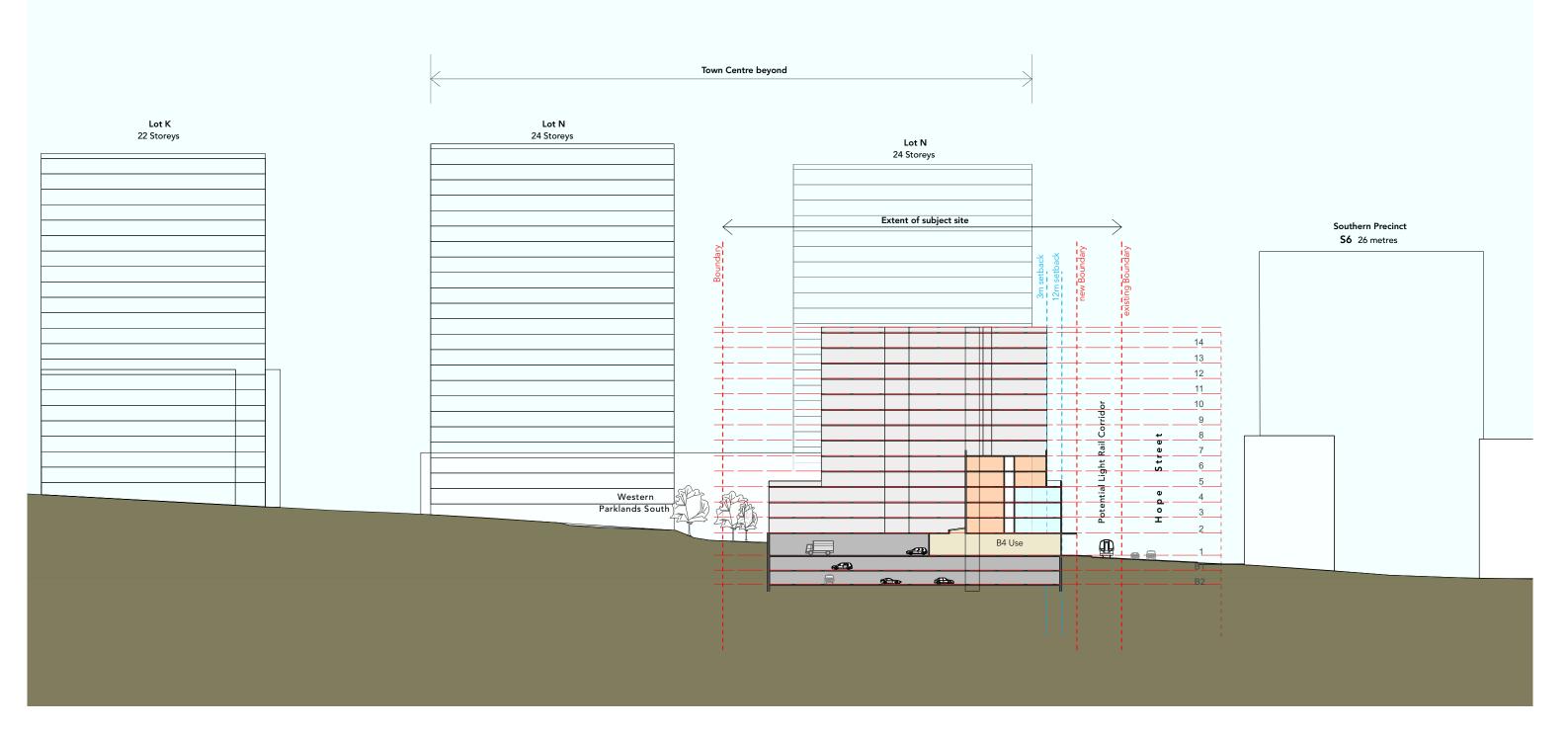

CLIENT Payce MP 2 Pty Ltd & SH Melrose Development 1 Pty Ltd

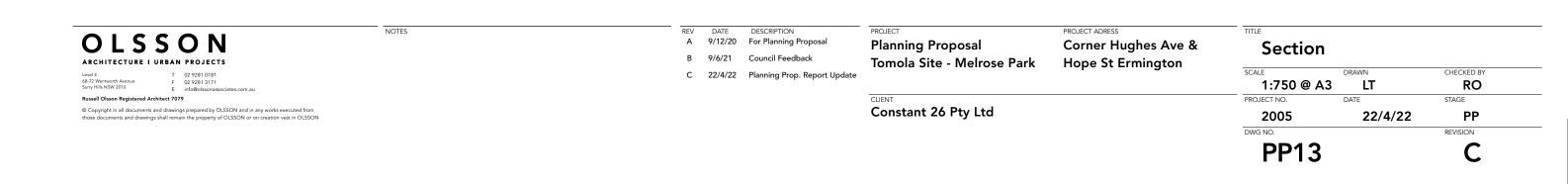












Appendix D – Site Photographs

Photograph 1: General condition of southern portion of 19 Hope Street (25 May 2023).

Photograph 2: Shipping containers at 19 Hope Street (25 May 2023).

Photograph 3: General site condition, vacant land at 69 Hughes Avenue (25 May 2023).

Photograph 4: General site condition, residential dwelling at 77 Hughes Avenue (25 May 2023).

Photograph 5: General site condition, residential dwelling at 75 Hughes Avenue (25 May 2023).

Photograph 6: General site condition, residential dwelling at 73 Hughes Avenue (25 May 2023).

Photograph 7: General site condition, residential 71 dwelling at Hughes Avenue (25 May 2023).

Photograph 8: View of the material from natural material from TP1(25 May 2023).

Appendix E – Borehole Logs

BOREHOLE LOG

BH ID: HA1

Loca	tion	Cnr of Hughes Ave & I	Hope	e St, N	Aelros	e Parl	<, NSW	Started	3	1 May	2023
Clier		M Projects						Complete		1 May	
Job I		E26047.E02						Logged B			Date 31 May 2023
Shee		1 of 1						Review B		R	Date
		ontractor -					Surface RL -	Latitude	-		
Plan		-					Inclination 90°	Longtitud			
	۔ ۲		ž							22	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		HA1_0.20-0.30		0.00		-	Topsoil: Silty CLAY: low plasticity, brown, dry, No odou trace of rootlets. fine grained silt.	ır, with			TOPSOIL
		HA1_0.20-0.30					Terminated at 0.40m. Refusal on hard surface.				
					-	-					

This log should be read in conjunction with El Australia's accompanying explanatory notes.

BOREHOLE LOG

BH ID: HA2

Loca	tion	Cnr of Hughes Ave &	Норе	e St, N	Aelros	e Parl	s, NSW S	Started	3	1 May	2023
Clier	ıt	M Projects					с	Complete		1 May	
Job I	No.	E26047.E02					L	Logged By	y A	L	Date 31 May 2023
Shee	ts	1 of 1					R	Review By	y S	R	Date
Drilli	ing Co	ontractor -					Surface RL - L	atitude	-		
Plan	t	-					Inclination 90° L	Longtitud	е-		
-	К.		٣							22	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		HA2_0.20-0.30		0.00		-	Topsoil: Silty CLAY: low plasticity, brown, dry, No odour, v trace of rootlets. fine grained silt.	with			TOPSOIL
				0.30		_	CLAY: low plasticity, orange mottled red, dry, No odour				
		HA2_0.70-0.80		0.50		_	Silty CLAY: low plasticity, grey, dry, No odour				
				-		_	Terminated at 0.80m. Refusal on hard surface.				
				-	-	-					
				1-	-	_					
				-	-	-					
				-	-	_					
				-	-	_					
				-		_					
				-	-	-					
				-	-	_					
				-	-	_					
				-		_					
				-		_					
				2-		_					
				-		_					
				-		_					
				_		_					
				_		_					
				_		_					
				_		_					
				_		_					
				_							
				_							
				3-		L					
						L					
					1	L					
				_	1	_					
						_					
					1						
				_	1	L					
				_							
						L					
				4-		L					
				4-							
				-]						
				-	1	_					
				-	1						
				-	1	-					
				-	1	-					
				-	1	-					
				_	1	-					

This log should be read in conjunction with EI Australia's accompanying explanatory notes.

BH ID: HA3

Loca Clier Job I Shee	nt No.	Cnr of Hughes Ave & Hope St, Melrose M Projects E26047.E02 1 of 1 Contractor -			Aelros	e Parl	c, NSW	Started31 May 2023Completed31 May 2023Logged ByALDateReview BySRDate			2023 Date 31 May 2023
							Surface RL -	Latitude	<u> </u>		Duc
Plan		-					Inclination 90°	Longtitud	le -		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		HA3_0.20-0.30		0.00		-	Topsoil: Silty CLAY: low plasticity, brown, dry, No odou trace of rootlets. fine grained silt.				
		HA3_0.20-0.30					CLAY: medium to high plasticity, orange mottled red, d	ry, No odour			
				-	-	-					

BH ID: HA4

Loca	tion	n Cnr of Hughes Ave & Hope St, Melrose Park, NSW					s, NSW S	Started 31 May 2023			
Clier		M Projects	•	,				Complete		, 1 May	
Job		E26047.E02						Logged By			Date 31 May 2023
Shee		1 of 1								R	Date
ſ								Review By	<u> </u>	n	Date
		ontractor -						Latitude	-		
Plan	t	-					Inclination 90° L	Longtitud			
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
				0.00			Topsoil: Silty CLAY: low plasticity, brown, dry, No odour, trace of rootlets. fine grained silt.	with			TOPSOIL
		HA4_0.2-0.3		0.10		-	Sitty CLAY: low to medium plasticity, Orange, mottled red dry, No odour	d,			RESIDUAL SOIL
				-			Terminated at 0.40m. Refusal on hard surface.				
						-					
				-		-					
						-					
				-	-						
				-		-					
					-	-					
				-							
				-		-					
				4		-					
						_					
				-							

eia	ustralia					Test Pit LOG				TP ID: TP1
	Cnr of Hughes Ave & M Projects E26047.E02 1 of 1	Норе	e St, N	Aelros	e Parl	s, NSW	Started Complete Logged B Review B	ed 2 By A		2023 2023 Date 26 May 2023 Date
Drilling	Contractor -					Surface RL -	Latitude	-		
Plant ⊯	-	>				Inclination 90°	Longtitud	de -	<u> </u>	
METHOD GROUND WATER	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
	TP1_0.2-0.3		0.00		-	FILL: Silty CLAY: low to medium plasticity, brown, with and brick fragments, No odour		_		FILL
	TP1_0.7-0.8		0.30			Silty CLAY: low to medium plasticity, orange mottled re dry, No odour Terminated at 1.00m. Target Depth Reached.	ed,	-		RESIDUAL SOIL
			2							
		Th		should		ead in conjunction with El Australia's accompa				c

eia	ustralia					Test Pit LOG				TP ID: TP2
Location Client Job No. Sheets	Cnr of Hughes Ave 8 M Projects E26047.E02 1 of 1	к Норе	e St, N	Melros	e Parl	s, NSW	Started Complete Logged B Review B	ed 2 y A	6 May 6 May L R	
Drilling	Contractor -					Surface RL -	Latitude	-		
Plant	-					Inclination 90°	Longtitud	le -	•	
METHOD GROUND WATER	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
	TP2_0.20-0.30		0.00		-	Topsoil: Silty CLAY: low plasticity, brown, dry, No odou trace of rootlets. fine grained silt.				TOPSOIL
	TP2_0.70-0.80		0.40			CLAY: low to medium plasticity, orange mottled red, dr	y, No odour			RESIDUAL SOIL
			2			Terminated at 1.00m. Target Depth Reached.				
		Thi				ead in conjunction with El Australia's accompar				

eiau	istralia					Test Pit LOG				TP ID: TP3
Location Client Job No. Sheets	Cnr of Hughes Ave & M Projects E26047.E02 1 of 1	Норе	st, N	Aelros	e Parl	s, NSW	Started Complete Logged B Review B	ed 2 y A	6 May 6 May L R	
	ontractor -					Surface RL -	Latitude	-		
Plant	-			1		Inclination 90°	Longtitud	le -		
METHOD GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	, DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
	TO3_0.20-0.30		0.00		-	Topsoil: Silty CLAY: low plasticity, brown, dry, No odou trace of rootlets. fine grained silt.				TOPSOIL
	TO3_0.70-0.80		0.50		-	CLAY: low to medium plasticity, orange mottled red, dr	y, Yes odour			RESIDUAL SOIL
	TO3_1.20-1.30		-		_					
			2			Terminated at 1.40m. Target Depth Reached.				
						ed in conjunction with El Australia's accompar				

eiau	ustralia		Test Pit LOG				TP ID: TP4
Location Client Job No. Sheets	Cnr of Hughes Ave & M Projects E26047.E02 1 of 1	Hope St, Melrose Pa	k, NSW	Started Complete Logged By Review By	d 2 / A	6 May 6 May L R	
	Contractor -		Surface RL -	Latitude	-		
Plant	-		Inclination 90°	Longtitud	е-		
METHOD GROUND WATER	SAMPLES & FIELD TESTS	SAMPLE RECOVERY DEPTH (m) GRAPHIC LOG RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
	TP4_0.20-0.30	0.00	Topsoil: Silty CLAY: low plasticity, brown, dry, No odo trace of rootlets. fine grained silt.	ur, with			TOPSOIL
	TP4_0.70-0.80		CLAY: low to medium plasticity, orange mottled red, d	ry, No odour			RESIDUAL SOIL
		This log should be	read in conjunction with El Australia's accompa				

eiau) Istralia					Test Pit LOG				TP ID: TP5
Client Job No. Sheets	Cnr of Hughes Ave & M Projects E26047.E02 1 of 1	а Норе	e St, M	/lelros	e Par		Started Complet Logged E Review I	ed 2 By A By S	6 May 6 May L SR	2023 2023 Date 26 May 2023 Date
	ontractor -					Surface RL - Inclination 90°	Latitude			
Plant	-	۲×				Inclination 90°	Longtitu		22	
METHOD GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY , REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
	TP5_0.20-0.30		0.00		_	Topsoil: Silty CLAY: low plasticity, brown, dry, No odou trace of rootlets. fine grained silt.	ır, with			TOPSOIL
	TP5_0.70-0.80		0.40			CLAY: low to medium plasticity, orange mottled red, dr	y, No odour			RESIDUAL SOIL
			2- 2- 3- 3- 5			Terminated at 1.00m. Target Depth Reached.				
		Th	is log	should	1 he r	ead in conjunction with El Australia's accompar		anatom	v pote	5

eiau	istralia				Test Pit LOG					TP ID: TP	6
Location Client Job No. Sheets	Cnr of Hughes Ave & M Projects E26047.E02 1 of 1	Hope St,	Melros	e Parl	s, NSW	Started Complete Logged B Review B	ed 2 y A	6 May 6 May L R		26 May 2023	
Drilling C	ontractor -				Surface RL -	Latitude	-				
Plant 또	-	2			Inclination 90°	Longtitud		22			
METHOD GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	& O	TERIAL ORIGIN BSERVATIONS	
	TP6_0.20-0.30	0.00	-	-	Topsoil: Silty CLAY: low plasticity, brown, dry, No odou trace of rootlets. fine grained silt.				TOPSOIL		
	TP6_0.70-0.80	0.40			CLAY: low to medium plasticity, orange mottled red, dr	y, No odour			RESIDUAL SC	DIL	
		3			Terminated at 1.00m. Target Depth Reached.						
		Thic log	r should		ad in conjunction with El Australia's accompar			/ note			

BH ID: BH1M

Loca Clier Job I Shee	t M Projects No. E26047.E0	i	k Hope S	t, Melrose Park, NSW			Started Completed Logged By Review By	25 May 20 25 May 20 AL SR		25 May 2023
Drilli	ng Contractor	Matrix Di	rilling	Surface RL ≈10.	50 m	(AHD)	Northing	-4003944.	1211 (MGA	A 2020 Zone 56)
Plan	t	Comacch	nio Geo 4	405 Inclination 90°	1		Easting	16816805	.4101 (MG	A 2020 Zone 56)
WATER	SAMPLES & FIELD TESTS		LOG RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKF	ILL DETAILS			STANDPIPE DETAILS
_	BH1M_0.2-0.3	0.80	10.50 	FILL: Silty CLAY: low to medium plasticity, brown, trace of rootlets, brick fragments, and sub-angular gravels, dry, no odour.						
GWNE		0.75		Silty CLAY: low to medium plasticity, brown mottled pale grey, moist, yes odour.	M < PL					
	BH1M_0.7-0.8	1.87 1.95		SAND: fine to medium grained, grey From 1.95m, pale grey to brown, grading into extremely weathered sandstone, moist, yes odour.	м					
90% Water			- - - - - - - - - - - - - - - - - - -				Grout 0.00m - 7.40m Bentonite 7.40m - 8.40m			-1.0m - 9.05m PVC casing (50mm Ø)

BH ID: BH1M

Locat Clien Job N Shee	t M Projects No. E26047.E0		e & Ho	pe St	e St, Melrose Park, NSW S C L					25 May 202 25 May 202 AL SR	25 May 2023	
	ng Contractor	Matri	x Drillin	g	Surface RL	≈10.5	0 m ((AHD)	Northing		Date 211 (MGA	A 2020 Zone 56)
Plant	:	Coma	cchio G	ieo 4	05 Inclination	90°			Easting	16816805.4	101 (MG	A 2020 Zone 56)
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	BACKF	ILL DETAILS			STANDPIPE DETAILS
90% Water					SHALE: dark grey SANDSTONE: fine to medium grained, pale gre with siltstone laminations Terminated at 15.26m. Target Depth Reached.			3	Sand 3.40m - 15.26m			9.05m - 15.05m PVC screen (50mm Ø)

CORE PHOTOGRAPH OF BOREHOLE: BH1M

e 2.62m to 11.0m BEGL	
Matrix Drilling Pty Ltd	
Comacchio Geo 405	
JC Date 25	/ 05 / 2023
Date	
e	Matrix Drilling Pty Ltd Comacchio Geo 405 JC Date 25

CORE PHOTOGRAPH OF BOREHOLE: BH1M

Project	Proposed Residential Development			Depth Range	11.0m to 1	5.26m BE	GL
Location	Cnr of Hughes Ave & Hope St, Melrose Park NSW			Contractor	Matrix Dri	lling Pty L	td
Position	See Figure 2	Surface RL	≈ 10.50m (AHD)	Drill Rig	Comacchi	io Geo 40	5
Job No.	E26047.G03	Inclination	-90°	Logged	JC	Date	25 / 05 / 2023
Client	PAYCE MP 2 Pty Ltd	Box	3 of 3	Checked		Date	

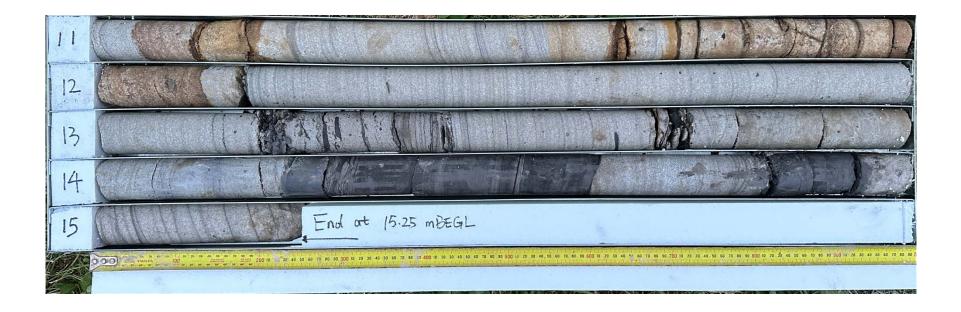
BH ID: BH2M

Clien Job N	t M Projects No. E26047.EC	5	e & Hop	be St	, Melrose Park, NSW			Started Completed Logged By	25 May 202 26 May 202 AL	23 Date	26 May 2023
Shee	ng Contractor	Matrix	Drilling	σ	Surface RL ≈14.	30 m ((AHD)	Review By Northing	SR -4003865.2	Date	A 2020 Zone 56)
Plan		Comac				50 111	, (10)	Easting			A 2020 Zone 56)
	-					щZ		Lusting	10010773.		12020 20110 307
WATER	SAMPLES & FIELD TESTS		GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKF	FILL DETAILS			STANDPIPE DETAILS
	BH2M_0.2-0.3	0.80		14.30 	FILL: Silty CLAY: low to medium plasticity, brown, trace of sub-angular to angular gravels and rootlets, dry, no odour.						
	BH2M_0.7-0.8	0.80		- +3.50 - - -	Silty CLAY: low to medium plasticity, pale grey mottled orange red, dry no odour.	- M <					
•				_		PL					
\triangleright		2		- - - - - - -	From 2.30m, orange brown, grading into extremely weathered sandstone						
		2.63		11.67 	SANDSTONE: fine to medium graine, brown with ironstaining						
				-				Grout 0.00m - 7.50m			
		4		- - -							-0.76m - 9.0m PVC casing (50mm Ø)
		5-		-							
		5.61_			From 5.61m, pale grey, with siltstone laminations						
90% Water		6		- - - -							
		7-		-							
		7.55-			From 7.55m, with shale laminations						
		8		 5.82	From 8.48m, orange brown with ironstaining			Bentonite 7.50m - 8.50m			
		9-		-				- - - - - -	-		

BH ID: BH2M

			e & Ho	pe St	, Melrose Park, NSW				Started	25 May 20		
Clien									Completed Logged By	26 May 20 AL	Date	26 May 2023
Shee									Review By	SR	Date	,
Drilli	ng Contractor	Matrix	<pre></pre>	g	Surface RL	≈14.3	30 m (AHD)	Northing	-4003865.	2316 (MGA	A 2020 Zone 56)
Plan	t	Coma	cchio G	ieo 4	05 Inclination	90°			Easting	16816773	.9624 (MG	A 2020 Zone 56)
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	BACKF	ILL DETAILS			STANDPIPE DETAILS
90% Water					From 13.26m, with shale laminations SHALE: dark grey SANDSTONE: fine to medium grained, pale gre shale laminations Terminated at 15.25m. Target Depth Reached.	ey,with			Sand 3.50m - 15.25m			9.0m - 15.0m PVC screen (50mm Ø)

CORE PHOTOGRAPH OF BOREHOLE: BH2M


Project	Proposed Residential Development			Depth Range	2.63m to 1	1.0m BEG	<u>SL</u>
Location	Cnr of Hughes Ave & Hope St, Melrose Park NSW			Contractor	Matrix Drill	ling Pty L	td
Position	See Figure 2	Surface RL	≈ 14.30m (AHD)	Drill Rig	Comacchi	o Geo 40	5
Job No.	E26047.G03	Inclination	- 90°	Logged	JC	Date	26 / 05 / 2023
Client	PAYCE MP 2 Pty Ltd	Box	1-2 of 3	Checked		Date	

CORE PHOTOGRAPH OF BOREHOLE: BH2M

Project	Proposed Residential Development			Depth Range	11.0m to 1	5.25m BE	GL
Location	Cnr of Hughes Ave & Hope St, Melrose Park NSW			Contractor	Matrix Dri	ling Pty L	td
Position	See Figure 2	Surface RL	≈ 14.30m (AHD)	Drill Rig	Comacchi	o Geo 40	5
Job No.	E26047.G03	Inclination	- 90°	Logged	JC	Date	26 / 05 / 2023
Client	PAYCE MP 2 Pty Ltd	Box	3 of 3	Checked		Date	

BH ID: BH3M

Loca Clien Job N	t M Projects	5	e & Ho	pe St	r, Melrose Park, NSW				Started Completed Logged By	26 May 202 26 May 202 AL		26 May 2023
Shee	ts 1 of 2								Review By	SR	Date	
Drilli	ng Contractor	Matrix	k Drillin	g	Surface RL	≈14.20) m (AHD)	Northing	-4003882.2	2609 (MGA	2020 Zone 56)
Plant	t	Coma	cchio G	ieo 4	05 Inclination	90°			Easting	16816710.	8999 (MG	A 2020 Zone 56)
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		CONDITION	BACKF	ILL DETAILS			STANDPIPE DETAILS
GWNE	BH3M_0.2-0.3	0.80		14.20 	FILL: Silty CLAY: low to medium plasticity, dark brown, with sub-angular to angular gravels, trac of brick fragments and rootlets, dry, no odour	e I	M < PL					
	BH3M_0.7-0.8	0.60 0.70 1.00		13.50	mottled pale grey, with fine to medium grained ironstone, moist, no odour From 0.70m, grading into extremely weathered	4						
90% Water		2			SANDSTONE: fine to medium grained, orange pale grey with ironstaining	to			Grout 0.00m - 7.50m			-0.84m - 9.0m PVC casing (50mm Ø)
		7				Austali			Bentonite 7.50m - 8.50m			

BH ID: BH3M

Locat Clien			e & Ho	pe St	t, Melrose Park, NSW				Started Completed	26 May 2 26 May 2		
Job N									Logged By	AL	Date	26 May 2023
Shee									Review By	SR	Date	
	ng Contractor		k Drillin			≈14.20	0 m (AHD)	Northing			A 2020 Zone 56)
Plant	:	Coma	cchio G	Geo 4	05 Inclination	90°			Easting	1681671	LO.8999 (MC	6A 2020 Zone 56)
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	BACKF	FILL DETAILS			STANDPIPE DETAILS
90% Water		110 - 100			SANDSTONE: fine to medium grained, orange to pale grey with ironstaining SHALE: dark grey SANDSTONE: fine to medium grained, pale grey with shale laminations Terminated at 15.24m. Target Depth Reached.				Sand 3.50m - 15.24m			9.0m - 15.0m PVC screen (50mm Ø)

CORE PHOTOGRAPH OF BOREHOLE: BH3M

								_
Project	Proposed Residential Development			Depth Range	1.0m to 9.	0m BEGL		
Location	Cnr of Hughes Ave & Hope St, Melrose Park NSW			Contractor	Matrix Dri	lling Pty L	td	
Position	See Figure 2	Surface RL	≈ 14.20m (AHD)	Drill Rig	Comacch	io Geo 40)5	
Job No.	E26047.G03	Inclination	- 90°	Logged	JC	Date	26 / 05 / 2023	
Client	PAYCE MP 2 Pty Ltd	Box	1-2 of 4	Checked		Date		

CORE PHOTOGRAPH OF BOREHOLE: BH3M

Project	Proposed Residential Development			Depth Range	9.0m to 15	5.245m BE	EGL
Location	Cnr of Hughes Ave & Hope St, Melrose Park NSW			Contractor	Matrix Dril	lling Pty L	.td
Position	See Figure 2	Surface RL	≈ 14.20m (AHD)	Drill Rig	Comacchi	io Geo 40	05
Job No.	E26047.G03	Inclination	- 90°	Logged	JC	Date	26 / 05 / 2023
Client	PAYCE MP 2 Pty Ltd	Box	3-4 of 4	Checked		Date	

BH ID: BH4

Locat Clien Job N Shee	t Io.	Cnr of Hughes Ave & M Projects E26047.E02 1 of 4	Норе	e St, N	/lelrose	e Parl	s, NSW	Started Complete Logged B Review B	ed 2 y Jo	5 May 5 May C	
		ontractor Geosense	Drill	ing Er	ngineer	rs	Surface RL ≈11.50 m (AHD)	Northing		100393	10.8797 (MGA 2020 Zone 56)
Plant		Comacchi					Inclination 90°	Easting			61.3610 (MGA 2020 Zone 56)
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
AD/T	GWNE	BH4_0.50-0.82 SPT 0.50-0.82 0.2 5/20 mm HB N=R		0.00_		_11.50 - - - - - - - 10.80	FILL: Silty CLAY: low to medium plasticity, dark brown, angular to sub-angular gravels and brick fragments		M < PL		
		0,2,5/20 mm HB N=R					Silty CLAY: low to medium plasticity, brown with mottles Log continued on next page. Log continued on next page.	d orange	<u>M < PL</u>		RESIDUAL SOIL

BH ID: BH4

Locat Clien Job N Shee	t Io.	Cnr o M Pro E260 2 of 4	ojects 47.EC	5	Ave &	Hope	St, Melrose Park, NSW				C Le	ogge	leted 25 May 2023	2023	
Drilli	ng Co	ontrac	tor				ng Engineers Surface RL ≈11.50	m (AH	ID)		Ν	orth	ing -4003910.8797 (MGA 2020 Zo	ne 56)	
Plant				Com	nacchi	o Geo	205 Inclination 90°	-	-			astin	g 16816761.3610 (MGA 2020 Z	one 56))
METHOD	Flush Return	TCR %	RQD %	DEPTH (m)	GRAPHIC LOG	RL (mAHD)		WEATHERING		▼ - D	EN s(50 - Ax Diam	GTH))	DISCONTINUITIES & ADDITIONAL DATA	FRACI SPAC	ING
							SANDSTONE: fine to medium grained, brown with mottled	DW			•				
				1.00 _ 1.30 _ 1.62 _ _		10.50 10.20 9.88	pale grey Sitty CLAY: medium plasticity, brown with mottled orange red, grading into extremely weathered sandstone SANDSTONE: fine to medium grained, pale grey to orange red NO CORE: 380mm thick	xw							
				2.00		9.50	SANDSTONE: fine to medium grained, pale grey with ironstaining	HW - MW		•			2.08-2.20: XWZ Silty sand Clay VN 2.43: JT 45° RO Silty sand Clay VN 2.57-2.62: CS CN		
				3— 				DW			v				
	5% Water									•			 4.32: JT 15° RO Silty clay Clay VN 4.55-4.60: XWS Silty clay Clay VN 4.81: CS Crushed sandstone and silty clay 		
	95% /			6				DW - SW					5.85-6.19: JT 30-75° PR RO Fe SN		
													6.57: JT 45-65° PR RO CN 9.05-9.13: XWS Silty clay 9.62: JT 0° PR RO Fe SN		

BH ID: BH4

			1 a				* <u>.</u>					
					Ave & I	Hope	St, Melrose Park, NSW				Starte	
Clien		M Pr E260	oject								Comp	
Job N		E260)2							Logge	
Shee		ontra		Goo	sonce	Drilli	ng Engineers Surface RL	≈11.50।	m (ALI	יח	Revie North	
		ontra	lor						ш (АН	D)		
Plant	t	1	1	Con	nacchio T	o Geo I	205 Inclination	90°		-	Eastin	
Δ	nrn			Ê	<u>ں</u>	ĝ			NG	S	STIMATED TRENGTH Is(50) ▼ - Axial	FRACTURE SPACING
METHOD	Flush Return	TCR %	RQD %	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	N	WEATHERING	∇	 ▼ - Axial - Diametral 	DISCONTINUITIES & ADDITIONAL DATA
ME	Flush	Ĕ	, щ	DEF	GR	RL (VEAT			
						_	SANDSTONE: fine to medium grained, pale g	rev with	>	<u> </u>	ST Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	899898 819898
				-		E	ironstaining	loy war				10.26: XWS Silty clay Clay VN
				-		_					•	
				-		_						
				-		-						
				11-		E						
				-		_						
				-		-						
				-		E						
				12-		-						
				-		_						
				-		-						
				-		E						
				13-		_						
				-		-						
				-		-						
				-		E						13.60-13.68: XWS Clay Clay VN
				-		_						
				14-		-						
				-		E						
				-		-						14.60: XWS Clay Clay VN
	ter			-		_						
NMLC	95% Water	86	85	15-		E			SW - FR			
2	95%			-		-						
				-		-						
				-		-						
				16-		E						
				-		-						
				-		_						16.39: XWS Crushed sandstone and silty
				-		E						clay
				-		-						
				17-		-						
				-		E						
				-		-			1			
				-		F			1			
				18-		E						
				-		-						
				-		F			1			
				-		-			1			
				19-		E						
						-7.71						
				19.21_		+	SHALE: dark grey					
				-		-						
				-		E			1			19.78-19.82: XWS Clay Clay VN
	I	I	I	20-		L Thic	log should be read in conjunction with	Fl Australia	 's acco		anvinge	I I I I I I I I I I I I I I I I I I I

BH ID: BH4

		151					•						
				-	Ave & I	Hope	St, Melrose Park, NSW				Started	25 May 2023	
Clien		M Pr									Completed		
Job N		E260)2							Logged By		25 May 2023
Shee		4 of 4		<u> </u>		D.::!!:.	curfees DI	11 50		<u>۱</u>	Review By	Date	2020 7 50
		ontrac	tor				ng Engineers Surface RL	≈11.50 m	(AHD)	Northing	-4003910.8797 (MGA	
Plant	:	r		Con	nacchi	o Geo	205 Inclination	90°		FOT	Easting	16816761.3610 (MGA	
D	nrn			Ê	U	â			DNG	STRE	MATED ENGTH (50) Axial		FRACTURE SPACING
METHOD	Flush Return	TCR %	RQD %	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		WEATHERING	▼ - ∇ - D	Axial iametral	DISCONTINUITIES & ADDITIONAL DATA	
ME	Flush	μĔ	Ř	DEP	GR GR	RL (i			/EAT			& ADDITIONAL DATA	0.088
	_					_	SHALE: dark grey		5 5	≥°5	ш Ч Ц Ц Ч Ц		3000 3000 3000
				-		-	SHALE. UAIK GIEY						
				-		-9.00							
				20.50		-	SANDSTONE: fine to medium grained, pale grey						
				-		-							
				21-		_							
				-		_							
				-		_							
				- 21.85-		-10.35	SHALE: dark grey						
				21.05			SHALE: dark grey				┥		
				22.24		-10.74	SANDSTONE. The to medium grained, pale grey	with shale		-			
	95% Water			-		-	laminations						
	5% V			-		_							
	6					-11.45 -11.53	SHALE: dark grey						
				23.03		-	SANDSTONE: fine to medium grained, pale grey						
				-		_					v		
				-		_							
				-		_							
				24-		_							
				-									
				-		_							
				-		_							
				25-		_							
				-		-13.72	Terminated at 25.22m. Target Depth Reached.						
				-	-	_							
				-		_							
				26-	-	_							
				-	-	_							
				-		_							
					-	-							
				-		_							
				27-									
						-							
				-	1	-							
				-		_							
				28-	-	_							
				-	-	-							
				-	1	-							
				-	1	_							
				29-		_							
				-	-	-							
				-		_							
				-		_							
				-	-	_							
		I		30-	L	L This	l log should be read in conjunction with El	Australia's	accon	npar	ving explana	atory notes	

BH ID: BH5

Clier Job I	nt No.	Cnr of Hughes Ave & I M Projects E26047.E02	Чор€	e St, N	/lelros	e Parl	s, NSW	Started Complete Logged B	ed 2 y Jo	6 May 6 May C	2023 Date 26 May 2023
Shee		1 of 3 ontractor Geosense	Drilli	ing Fr	nginoo	rc	Surface RL ≈11.50 m (AHD)	Review B Northing		100396	Date 62.7583 (MGA 2020 Zone 56)
Plan	-	Comacchi				15	Inclination 90°	Easting			20.0726 (MGA 2020 Zone 56)
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	Lusting	MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
AD/T	GWNE	BH5_0.50-0.70		0.00_0.10_0.10_0		_11.50 _11.40 _11.20 _	CONCRETE: 100mm thick FILL: Silty CLAY: low to medium plasticity, dark brown, angular to angular gravels, trace of brick fragments an Silty CLAY: low to medium plasticity, orange red with m grev. with fine to medium grained ironstone	d rootlets	- M < PL M < PL	-	CONCRETE FILL RESIDUAL SOIL
		BH5_0.500.70 2,3/50 mm HB N=R					grey, with fine to medium grained ironstore				

BH ID: BH5

	au						*						
					Ave & I	Hope	St, Melrose Park, NSW					tarte	
Clier Job I			oject: 047.E0									.omp ogge	leted 26 May 2023 d By JC Date 26 May 2023
Shee		2 of 3		/2									w By Date
	ng Co			Geo	sense	Drilli	ng Engineers Surface RL	≈11.50 n	n (AHI	D)		lorth	
Plan					nacchio			90°				astin	
	1								(7)	ES		ATED GTH	FRACTURE
ПО	Flush Return	%	%	E)	₽.	(DH)			WEATHERING	ST	FREN Is(50 ▼ - A	GTH)) vial	DISCONTINUITIES
METHOD	sh R	TCR	RQD %	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	1	АТНЕ	▽-	- Diar	netral	& ADDITIONAL DATA
2	ЪЦ			ä	0	R			WE,	VL ٥.1 - ٥.3	; ; ; ; ; ; ; ; ; ; ; ;	°° H H H H H	31000 31000 31000
				0	-	-	Log continued from previous page				Π	Ť	
				-		_							
				-		_							
	95% Water			- 1	-	-	SANDSTONE: fine to medium grained, pale gre	v with					
	96 N	-		1-		-	ironstaining						
				-									
				-		_					ł		
				-		-							
				2-									1.86: JT 15° PR RO CN
						_			DW				
				-		_							
				-									
				-		_							
				3-		_					v		
				-		_							3.34-3.38: JT 15° PR RO Silty clay
				-		_					П		angular sandstone fragments Clay VN
				-		_							
				4-		_							
				-		-							
				_								,	
				-		_							
						_			DW - SW				
				5		_							
NMLC	Nater	100	06	-		_							
Z	W %0			-		_							
	0			-		_							5.77: JT 15° PR RO Silty clay Infilled
				6-		_							
				-		_							
				-		E					v	11	6.52: XWS Silty clay
				-		Ļ							
				7-		_							
				-		-							
				-									
						_							
				-		_							
				8-									
						_							
				-		-							
				-		_							
				9-]								
						_							
				-		_							
				-									9.59: JT 30° PR RO CN
						E							
				10-		This	s log should be read in conjunction with E	Australia'	s acco	mpa	anv	ing ex	xplanatory notes

BH ID: BH5

Clien Job N Shee	t Io. ts	M Pr E260 3 of 3	oject: 47.EC 3	s)2			St, Melrose Park, NSW				Log Rev	nplo ged view	eted 26 May 2023 I By JC Date 26 May v By Date				_
Drilli		ontrac	tor					≈11.50 m	n (AH	D)	Nor						
Plant	Flush Return	TCR %	RQD %		CRAPHIC LOG LOG	RL (mAHD)	MATERIAL DESCRIPTION	90°	WEATHERING	STF I	East IMATEL ENGTH s(50) - Axial Diametra	D H ral	DISCONTINUITIES & ADDITIONAL DATA	FF	RACI	URE	
	0% Water			11			SANDSTONE: fine to medium grained, pale grey wi ironstaining SHALE: dark grey SANDSTONE: fine to medium grained, pale grey to with shale laminations		SW - FR				11.45: XWS Silty clay Clay VN 14.65: JT 15° PR RO Silty clay and sandstone fragments Infilled 15.00-15.31: FZ 75-90° IR RO CN				
				17- 													

Appendix F – Field Data Sheets

		WATER	SAMPLI	NG FIELI	SHEET				
							1	-	eiaustralia
Site Addre	ess:	9 Hope	Street	Melr	ose Par	6	Job Numb	ber: EZ	60 47
Client:						•	Date:		15/23
Field Staf	f:	k	<u>7</u> C					Location ID	BFI JIV
Well Loca	ition:						Round No		•
MEDIUM			Groundwa	iter 🗆 🛙	Surface Wa	ater	□Stormw	ater DOth	er:
SAMPLIN									
Well Insta							-	()	+/ (+ above ground - below groun
Initial Wel							Screen In	terval (mBTOC):	9
Previous		Date:					Previous	SWL (mBTOC):	5
PID REAL									
PhD Head	space (pp	om):		Ö			PID Back	ground (ppm):	0
PID Breat	hing Space	ce (ppm):		6					
PRE PUR	GE								
Total Wel	I Depth (n	nBTOC):	1	6			Well Hea	d Condition:	4000
SWL (mB	TOC):			1.92			Water Co	lumn (m): 🛛 🖊	4.08
PHASE S	EPARAT	ED HYDR	OCARBO	NS (PSH)					
Depth to F	PSH (mB1	FOC):		/			PSH Visu	ally Confirmed (I	Bailer):
PSH Thic	kness (mr	n):							
Field Filte	ered								
Yes (0.45	μm)	凸					No	□ (Requ	uest lab 0.45 µm filter the sample
PURGE A	ND SAM	PLE						· · ·	·
Sampling	Method		Bladde	er	Peristalti	ic 🗆	Submersit	ole □Oth	ier:
	-	t (mBTOC):	9			Fill Timer	:	
		gulator (ps	,	ŀ			Discharge	e Timer:	
Weather (/				Cycle:		
Pump on	time:	10	1.28				Pump off	time: //	:10
		PARAME							
Probe Ma	ke and M	odel:					Bump Tes	st Date and Time	:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (co	lour, turbidity, odour, sheen etc.)
10:30	0.5	2.09	19.27	2015	-290.5	12.3	12.81	clear,	low turbidity No Odow No Sh
10:35	1	2.34	19.41	1662	-274.5	0.13	12.61		
10:40	1.5	2.1	19.76		-282.4	-	12.65		
10:45	2	2.79	19.8Z	1685	-284.1	0.12	12.69		
10:50	2.5	2.88	19.57	1673	-284,3	0.15	12.69	Y	
			· · ·	10-5					
							+		
Stab	ilisation ra	ange:					+		
	ecutive re	-	±0.2°C	±3%	±20mV	±10%	±0.2		
		TS/OBSEF			•	<u> </u>	<u> </u> /.		a deala ali
STIER C		10/003EF		. Pu	mp.	n le-f	at	mat;mu	m appin and
	90,	IQT		to	pun	np 1.	m:tu	t'-ons	m depth dre
SIGNATU	IRE:			A					

ſ

.

		WATER	SAMPLI	NG FIELI	O SHEET				ei	austral	lia				
Site Addr	ess:	94.00	Street	Mela	a ca Ran	6	Job Num	ber:	E260 41	,					
Client:		ope	0.0121		OK 1-4	1	Date:		$\frac{1}{7}$	•					
Field Staf	f:		<u>4</u>				Sampling	Location ID	31/5/23 Br12	M					
Well Loca	ation:		. –				Round No								
MEDIUM		5	Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	vater 🗆	Other:						
SAMPLIN	IG POINT	INFO													
Well Insta	allation Da	ite:					Stick up /	down (m):	+/	(+ above ground - I	below ground)				
Initial We	ll Depth (r	nBTOC):					-	iterval (mBT)							
	Sampling							SWL (mBTC							
PID REA							1		,						
PID Head	lspace (pp	om):		\bigcirc			PID Back	ground (ppm): (2						
	thing Space			6				<u> </u>							
PRE PUR															
Total Wel	ll Depth (n	nBTOC):		16			Well Hea	d Condition:	Good						
SWL (mB		,	Ц.	96			Water Co	olumn (m):	11.04						
		ED HYDR	OCARBOI												
Depth to I	PSH (mB1	FOC):					PSH Visu	ally Confirm	ed (Bailer):						
-				,				<i>[</i>	()						
		,													
Yes (0.45	um)	ĸ					No		Request lab 0.	45 um filter th	e sample)				
								(.			<u>e eampie</u>)				
Sampling	Method			er l	Peristalti	ic 🗆	Submersit	ble D	10ther:						
		t (mBTOC		9											
			-	-(
							-								
	pth of Pump Inlet (mBTOC): 9 Fill Timer: mp Pressure Regulator (psi): Discharge Timer: eather Conditions: Cycle: mp on time: 11:25														
	Pump Inlet (mBTOC): Imp Pressure Regulator (psi): Imp Pressure Regulator (psi): Discharge Timer: eather Conditions: Cycle: Imp on time: II:, 25 Pump off time: II:, 25 ATER QUALITY PARAMETERS Bump Test Date and Time: obe Make and Model: Bump Test Date and Time: Time Volume SWL														
Time	Volume (L)	-	Temp (°C)			DO (mg/L)	рН			dity, odour, sh	een etc.)				
1:30	0.5	3.6	20.25	2667	-271	Z.37	12,54	clear.	ow turbid it.	No odour , 1	Na sheen				
11:35	1	3. ĩ	20.28	Z663	-272.8	0.67	12.48			,					
11:40	1.5	4.1	20.20	2863	-274	0.64	12.5								
11.45	2	4.Z	20.23	2875	- 275.3		12 51								
11:50	2.5	4.4	20.33	2921	- 274:6		12.49		,	/					
										•					
3 cons	ilisation ra	adings	±0.2°C	±3%	±20mV	±10%	±0.2								
OTHER C	OMMEN	TS/OBSEI	RVATIONS	S: p	1.1.1	_ 0	a	a doc	the du	C to p	21				
			limita	lump l'ons	11189	at m	ax mu				чтр				
SIGNATU	JRE:		þ-												

I

WATER SAMPLING FIELD SHEET	eiaustralia
Site Address: 19 Hoge Street Melynese Park	Job Number: E260 47
Site Address: 19 Hope Street Melrose Park Client:	Date: 7//~/? ₹
Field Staff:	Date: 31/5/25 Sampling Location ID BH3
Well Location:	Round No:
MEDIUM Surface Water	□Stormwater □Other:
SAMPLING POINT INFO	
Well Installation Date:	Stick up / down (m): 4/ (+ above ground - below ground)
Initial Well Depth (mBTOC):	Stick up / down (m): 4/ (+ above ground - below ground) Screen Interval (mBTOC): 9
	Previous SWL (mBTOC):
Previous Sampling Date: PID READINGS	Plevious SVVL (IIIB10C).
	PID Background (ppm): C
PID Breathing Space (ppm): 6 PRE PURGE	
Total Well Depth (mBTOC): <u>I</u> <u>6</u>	Well Head Condition: 9 and 0 Water Column (m): 17 - /
SWL (mBTOC):	Water Column (m): 13-1
PHASE SEPARATED HYDROCARBONS (PSH)	
Depth to PSH (mBTOC):	PSH Visually Confirmed (Bailer):
PSH Thickness (mm):	
Field Filtered	
Yes (0.45 μm) 🖄	No D (Request lab 0.45 µm filter the sample)
PURGE AND SAMPLE	
Sampling Method DBladder Peristaltic	□Submersible □Other:
Depth of Pump Inlet (mBTOC):	Fill Timer:
Pump Pressure Regulator (psi):	Discharge Timer:
Weather Conditions:	Cycle:
Pump on time: 12; 03	Pump off time: 1274ω
WATER QUALITY PARAMETERS	
Probe Make and Model:	Bump Test Date and Time:
TimeVolumeSWLTempECRedoxDO(L)(mbtoc)(°C)(µS/cm)(mV)(mg/l)	L) (units)
12:10 0.5 4.99 19.19 362 -246.5 2.39	
12,15 1 5.08 19.47 263 -220.4 0.51	1,46
12:20 1.5 5.17 19.57 258 -217.1 0.34	
12:25 2 5.24 19.56 256 -215.8 0.20	1 11.38
12:30 2-5 5.29 19.58 254 -214.1 0-26	5 11·36 V
Image: state	
Stabilisation range: 3 consecutive readings±0.2°C±3%±20mV±10%OTHER COMMENTS/OBSERVATIONS:P1/2621/262	* ±0.2 A maximum depth due to pump limitur;
SIGNATURE:	

I

Appendix G – Chain of Custody and Sample Receipt Documentation

SGS EHS Sydney COC SE248200

Sheet lof 3						Т													Ana	alysis								-		Comments
Site: 19 Hope Street, Me	rose Park				oject No: 5047		1	1	1	1		1	1		(2	4M) Suite		te rials)	5			(CrS)							HM A Arsenic Cadmium Chromium
Laboratory:	SGS Austr Unit 16, 33 ALEXANDI P: 02 8594	Maddox RIA NSW	V 2015			-		0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			CAUN: 1	Asbestos Quantification	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	ENM Suite - Stockpile composite (HM ^A /pH / EC / Foreign Materials)	Lectro Suite Philols	1		Reducible Sulfur (C		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	hloride		/ PAH	Copper Lead Mercury Nickel Zinc HM [®] Arsenic
Sample	Laboratory ID	Conta Typ	00000	Sampl	1		WATER	jum fiel	OTHER	P/OP/P			X	Cs	vestas	bestos Q	avated h	A Suite -	A Suite -	vatering	pH / pH peroxide	sPOCAS	Chromium F	SI	CEC (c	/ EC (elé	Sulphate / Chloride	_	P HM ⁸ /	Cadmium Chromium Lead
				Date	Time	SOIL	WA	0.45	DTO		Y WH	V WH	BTEX	vocs	Aste		Exce	ENN (TRI	ENN (HM	- Pee	/Hq	sPO	Chr	PFAS	Hd	Hd	Sulp	Lead	TCLP	Mercury Nickel
BH1M-02~	5 1	PP/5	124	25/572	AM	X				Х				X		X				X	-			×				1	1.4	Dewatering Suite pH & EC
BH2M-0.2-0.			-	V	AM					\times	-			X		X				X				X						TDS / TDU Hardness Total Cyanide
BH3M-0.2-0.				26/5/23						X				X		X				X				X						Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
BH4_0.2-03				-5/5/23						X				X	_	x				\times				X					1	TRH (F1, F2, F3, F4) BTEX
BH5-0.2-0.	5		2	-615/23	AM					X	2			X	_	X				X				X						PAH Total Phenol
				1	AM	1	-	-		5	2			X		V		-		5										LABORATORY
TPI-0.2-03		++			1	$\left \right $	-			\leq				X		X	-			2										Standard
TPZ - 0.2 - 0.		++									6			$\overline{\nabla}$		5			-	5				V					1	24 Hours
TP3-0.2-03	8	++					-							A		X				~			-	X						48 Hours
TP4-0.2-03		+					-		-		-															201				72 Hours
TP5_0.2-0: TP6_0.2-03	9		/	1	1	V				X	-		1.1	X	-	X				X				X					12.1	Other
Container Type: J = solvent washed, acid rin			jar	PF: P	FASj	u =	Inves	stigator:	I attes	t that th	ese sa	mples		collected		ordanc	e with	standa	ard El fi	eld sam	npling			Repo	rt with I	El Was	ste Class	sificatio	on Tabl	le . 🕅
S = solvent washed, acid ri P = natural HDPE plastic b	ottle	lle						ler's Nar	ne (El):						ed by (5GS):	2					Sampl	ler's C	ommer	nts:				12	
VC = glass vial, Tefton Sep ZLB = Zip-Lock Bag		ulk Bag					Print			Antony	Lo			Print		-		~				i) <i>k</i>	2/10	~	~	-	-		
12			PY	6.01, 55 N RMONT N	SW 2009	ət,		ature		a		-		Signa	2	Þ	2	pu	ba			9	7	1	se 11	4)er:	310	o spike
aipust	ralia			Ph: 9516 Deiaustral			Date			9/	51	123		Date	20	010	51	23	0	3.0	20	2/	6	1	pia,	nR 11.	and	1	TY	spike
Contamination Remediat	on I Geotechnica		-	OC June 2021 FOR			1000000000	ORT			ults to:	lab@)eiau	stralia	com	au							Ŧ2	2 12	d	elc-	rend	~ 1	tod	~7
			C.	CO JOIN EULITON			riease	e e-mail	abora	ury resi	ints to:	and	Giau	suana	1.0011	au														

Sheet 2 of 3			2				S	Sampl	e Mat	rix						5				Ana	alysis	steanse ean to the									Comments
Site: 19 Hope Street, Mel	rose Park				Proj E26	ect No: 047			-							PHade		ENM) Suite	te	t composite eign Materials)			A7	(CrS)			rity)				HM A Arsenic Cadmium Chromium Copper Lead
aboratory:	SGS Austra Unit 16, 33 ALEXANDF P: 02 8594	Mad RIA N	ISW 201	5	9				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			CYANIDE;	Asbestos Quantification	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	I Suite - Stockpile comp	Suite	oxide .	= 1-10	Chromium Reducible Sulfur		CEC (cation exchange)	(electrical conductivity)	Sulphate / Chloride	•	HAH	Mercury Nickel Zinc HM ^g Arsenic
Sample	Laboratory	1.000	ontainer		Sampli	ng	_	ER	µm fie	OTHER	A /TRI	A JTRI	A /TRI	×	s	esteen	estos (ivated	I Suite	A /pH /	vatering Suite	pH / pH peroxide	8	omium	l v2	CEC (U U	hate / C		¥	Cadmium Chromium Lead
ID	ID	_	Туре	Dat		Time	Soil	WATER	0.45	0Ţ		V WH	HM A	BTEX	VOCS	fer.	Asb	Exca	ENM TR	ENM S (HM ^A	Dew	Hq/	da	Chrc	PFAS	/Hd	/Hq	Sulpl	Lead	TCLP	Mercury Nickel
HA1-0-2-0	1	PF	5/24	25	Ista	AM	X			-	Ø	1.							-				X								Dewatering Suite pH & EC TDS / TDU
HAZ_0.2-0.3 HAZ_0.2-0.3	10			261	k Fre	PM	+				X				X	X							X				2				Hardness Total Cyanide Metals (Al, As, Cd, Cr,
SHIM_0.7-08	11	5	1210			- Andrewson and the second		-								1	· .		-			×								1	Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
H2M-0.7-0.5	12		1		F	PM						X		-	X	X	n			:40		X									PAH Total Phenol
SH3M_0.7-08	13			261	5/23	AM						X			X	X						×								1	LABORATORY
SH4-0.7-0.8	14			25/4					-			X			X	X			ļ			X				-					Standard
H5_07-0.8	15	-	1	26/4	5/23	AM	-	-	-		-	X	-	-	K	K				-		-				-			-	-	24 Hours
PT _0.7-08	16	-	1			1	+					X			X	X		-		-							-			1	48 Hours
P2_0.7-0.8	17	-	-				-					X			17	-X				-	-	X	-							1	72 Hours
TP3_0.7-0.	18	-	1		/	1	1					1			~		-							-	-						Other
Container Type:			Ψ	PE	: PI	CASJA	-	Inve	stigator	: I atte	st that th	nese sa	amples				ordan	ce with	standa	ard El fi	eld san	npling			Popo	ort with	ElWas	to Clas	eificati	oo Tabl	• • 🔽
= solvent washed, acid rir s = solvent washed, acid ri e = natural HDPE plastic bo	nsed glass both		glass jar	, ,		• 5		Same	ler's Na	me (EI)		-		pr	Recei	es. ved by (SGSY						Samo	ler's C	omme	St. 11	LIWAS	ile Glas	Sincau		· K
C = glass vial, Tefton Sep LB = Zip-Lock Bag		lulk Ba	ag			Prin		ine (121)	Anton	y Lo			Print								Samp										
120				PYRMO	iller Stree SW 2009		Sign	pature 9		A	1	- 10	~	Sign	ature	B	A		ar	-							*				
eiaust	ralia		la	ab@eiau		0722 a.com.a Mv.5-sGS	u	IMP	ORT				12			a.com	00	512	23	0'3	.05										

a i di manen

Sheei 3073							S	Sampl	e Mat	rix										Ana	lysis	1									Comments
Site: 19 Hope Street, Me	lrose Park	en A]	Proje E26(ect No: 047										e anols		ENM) Suite	te	osite terials)				(CrS)			ity)				HM A Arsenic Cadmium Chromium Copper Lead
aboratory:	SGS Austra Unit 16, 33 ALEXANDF P: 02 8594	Made RIA N	SW 201	5					0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX		-	eyavide D'houals	Quantification	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	Suite - Stockpile composite /pH / EC / Foreign Materials)	Dewatering Suite	oxide		Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Sulphate / Chloride		TCLP HM ^B / PAH	Mercury Nickel Zinc HM [®] Arsenic
Sample	Laboratory	Co	ntainer	S	amplin	ig		R.	m fiel	L H	/TRH	TRF	TRF			stes	~	ated h	Suite -	Suite - /pH/	Itering	H per	SAS	mium		CEC (EC (el	ate / C		HM	Cadmium Chromium Lead
ID	ID		Гуре	Date		Time	SOIL	WATER	0.45 µ	OTHER	HM ^A OCP/(Y WH	A MH	BTEX	vocs	Asbe	Asbestos	Excav	ENM (TRH/	ENM Suite - : (HM ^A /pH / E	Dewa	pH / pH peroxide	sPOCAS	Chror	PFAS	D/Hd	H/ Hd	Sulpha	Lead	TCLP	Mercury Nickel
TP5 0.7-0.8	20	51	ZLR	26/8	5/23	AM	X									1						X									Dewatering Suite
TP5_0.7-0.8 TP6_0.7-08	21		1	2615	123	AM	1														~	X					2				TDS / TDU Hardness
F-1A2-0-7-02	1		}	25/5																											Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
HA3-0.7-04	- 22	-		26/5																		X									TRH (F1, F2, F3, F4) BTEX
BHIM_1.2-1.				2515								X			X	X		÷ .				X									PAH Total Phenol
TP3-1.2=1.3			V	26/5		AM	V		1													X									LABORATORY
Tip blank	25		1	1									-	X								-									Standard
No Spike	26	1	V				V							X																	24 Hours
, , ,																															48 Hours
	A.																														72 Hours
																															Other
												1													11						
Container Type: = solvent washed, acid ri			lass jar					Inve	stigato	r: I atte	st that th	nese sa	amples		ollecte		cordan	ce with	standa	ard El fie	eld san	npling			Repo	rt with	El Was	ite Clas	sification	on Tabl	e . 🔽
i = solvent washed, acid r = natural HDPE plastic b		le						Sam	oler's Na	ame (El)	:	7				ived by (SGS):			-			Samp	ler's C	ommer	nts:				1	
/C = glass vial, Tefton Sep /LB = Zip-Lock Bag	btum BB = B	ulk Ba	g	2				Prin	t		Anton	y Lo			Prin	t												1			
				uite 6.01, PYRMON				Sigr	nature		4	-			Sign	ature	8	in F	2.	bar	a		1								
				Ph: 9	9516 (0722		Date	9	2	- 91	51	2	5	Date	20	20	5	23	the second s	3.0	70									
elaust	ralia		la	ab@eiau			u	1000000000	ORT			1											1								
CONCERNINGUOD I MERINEGIO	APAL 1 STORE MACO			COC June 20	021 FORM	1v.5 - SGS		Pleas	e e-ma	il labora	atory res	ults to:	lab@	yeiau	strali	a.com	1.au														

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Sergio Raposeira	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E26047 19 Hope Street Melrose Park	Samples Received	Fri 26/5/2023	
Order Number	E26047	Report Due	Fri 2/6/2023	
Samples	26	SGS Reference	SE248200	

- SUBMISSION DETAILS

This is to confirm that 26 samples were received on Friday 26/5/2023. Results are expected to be ready by COB Friday 2/6/2023. Please quote SGS reference SE248200 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 26 Soil 26/5/2023 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 11.5°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number. 2562/14420. Report No. 5 Soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed. TP4_1.2-1.3 - extra sample received. FM1 and FM2 - 2 extra material sample received.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

t +61 2 8594 0400 www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

Project E26047 19 Hope Street Melrose Park

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Phenolics in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1M_0.2-0.3	30	14	26	11	1	10	79	7
002	BH2M_0.2-0.3	30	14	26	11	1	10	79	7
003	BH3M_0.2-0.3	30	14	26	11	1	10	79	7
004	BH4_0.2-0.3	30	14	26	11	1	10	79	7
005	BH5_0.2-0.3	30	14	26	11	1	10	79	7
006	TP1_0.2-0.3	30	14	26	11	1	10	79	7
007	TP2_0.2-0.3	30	14	26	11	1	10	79	7
008	TP3_0.2-0.3	30	14	26	11	1	10	79	7
009	TP6_0.2-0.3	30	14	26	11	1	10	79	7
010	HA3_0.2-0.3	30	14	26	11	1	10	79	7
012	BH2M_0.7-0.8	-	-	26	-	1	10	79	7
013	BH3M_0.7-0.8	-	-	26	-	1	10	79	7
014	BH4_0.7-0.8	-	-	26	-	1	10	79	7
015	BH5_0.7-0.8	-	-	26	-	1	10	79	7
016	TP1_0.7-0.8	-	-	26	-	1	10	79	7
017	TP2_0.7-0.8	-	-	26	-	1	10	79	7
019	TP4_0.7-0.8	-	-	26	-	1	10	79	7
023	BH1M_1.2-1.3	-	-	26	-	1	10	79	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E26047 19 Hope Street Melrose Park

No.	Sample ID	VOC's in Soil
025	Trip Blank	11
026	Trip Spike	11

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SE248200

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E26047 19 Hope Street Melrose Park

		_	ю					
No.	Sample ID	Fibre Identification in soil	Gravimetric Determination of Asbestos in Soil	Mercury in Soil	Moisture Content	Per- and Polyfluoroalkyl Substances (PFAS) in	Total Cyanide in soil by Discrete Analyser	Total Recoverable Elements in Soil/Waste
001	BH1M_0.2-0.3	2	9	1	1	59	-	7
002	BH2M_0.2-0.3	2	9	1	1	59	-	7
003	BH3M_0.2-0.3	2	9	1	1	59	-	7
004	BH4_0.2-0.3	2	9	1	1	59	-	7
005	BH5_0.2-0.3	2	9	1	1	59	-	7
006	TP1_0.2-0.3	2	9	1	1	-	-	7
007	TP2_0.2-0.3	2	9	1	1	-	-	7
008	TP3_0.2-0.3	2	9	1	1	59	-	7
009	TP6_0.2-0.3	2	9	1	1	59	-	7
010	HA3_0.2-0.3	2	-	1	1	-	1	7
012	BH2M_0.7-0.8	-	-	1	1	-	1	7
013	BH3M_0.7-0.8	-	-	1	1	-	1	7
014	BH4_0.7-0.8	-	-	1	1	-	1	7
015	BH5_0.7-0.8	-	-	1	1	-	1	7
016	TP1_0.7-0.8	-	-	1	1	-	1	7
017	TP2_0.7-0.8	-	-	1	1	-	1	7
019	TP4_0.7-0.8	-	-	1	1	-	1	7
023	BH1M_1.2-1.3	-	-	1	1	-	1	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

SAMPLE RECEIPT ADVICE

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Field pH for Acid Sulphate Soil
011	BH1M_0.7-0.8	4
012	BH2M_0.7-0.8	4
013	BH3M_0.7-0.8	4
014	BH4_0.7-0.8	4
018	TP3_0.7-0.8	4
020	TP5_0.7-0.8	4
021	TP6_0.7-0.8	4
022	HA3_0.7-0.8	4
023	BH1M_1.2-1.3	4
024	TP3_1.2-1.3	4

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E26047 19 Hope Street Melrose Park

Ming To

From:	Antony Lo - ElAustralia <antony.lo@eiaustralia.com.au></antony.lo@eiaustralia.com.au>
Sent:	Monday, 19 June 2023 11:34 AM
То:	Ming To; Samplereceipt; Customer Service
Cc:	Sergio Raposeira - ElAustralia; Laboratory Results - ElAustralia
Subject:	RE: Sample Receipt for 324760 E26047, Melrose Park

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Envirolab team,

Can we please have these samples tested for heavy metals on a 3 day TAT

Kind regards,

Antony Lo **BEnvMgmt Environmental Engineer**

T 02 9516 0722 E antony.lo@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

www.elaustralia.co	ili.au			
Environmental	Geotechnical	Structural	Civil 🛛	Hazardous Materials
				· · · · · · · · · · · · · · · · · · ·

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information.

If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

From: Ming To [mailto:MTo@envirolab.com.au] Sent: Monday, 5 June 2023 5:54 PM To: Sergio Raposeira - EIAustralia; Laboratory Results - EIAustralia Cc: Antony Lo - EIAustralia Subject: RE: Sample Receipt for 324760 E26047, Melrose Park

Caution: This email originated from outside your organization and might have suspicious subject or content. PLEASE DO NOT CLICK ANY LINKS AND OR OPEN ANY ATTACHEMENTS UNLESS YOU CAN CONFIRM THE SENDER.

Hi Sergio,

Apologies this on hold SRA was sent by accident while updating the testing per COC received today. Update SRA will be sent to you when ready.

Kind Regards,

Ming To | Customer Service | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067

12ef-224760-A 7A713 day. We: 22106/2023

Ming To

From:	Antony Lo - ElAustralia <antony.lo@eiaustralia.com.au></antony.lo@eiaustralia.com.au>	,
Sent:	Monday, 19 June 2023 11:43 AM	
То:	Ming To; Samplereceipt; Customer Service	
Cc:	Sergio Raposeira - ElAustralia; Laboratory Results - ElAustralia	
Subject:	RE: Sample Receipt for 324760 E26047, Melrose Park	324760-A

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

ra

Practical Solutions for Built Environments

Thank you,

Can you please also include TRH as well for this job.

Kind regards,

Antony Lo BEnvMgmt Environmental Engineer

T 02 9516 0722 E <u>antony.lo@eiaustralia.com.au</u>

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information.

If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

🖨 Please consider the environment before printing this email.

From: Ming To [mailto:MTo@envirolab.com.au] Sent: Monday, 19 June 2023 11:36 AM To: Antony Lo - EIAustralia; Samplereceipt; Customer Service Cc: Sergio Raposeira - EIAustralia; Laboratory Results - EIAustralia Subject: RE: Sample Receipt for 324760 E26047, Melrose Park

Caution: This email originated from outside your organization and might have suspicious subject or content. PLEASE DO NOT CLICK ANY LINKS AND\OR OPEN ANY ATTACHEMENTS UNLESS YOU CAN CONFIRM THE SENDER.

Hi Antony,

No problem, we can get that organised for you.

Kind Regards,

Ming To | Customer Service | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200

			ZLB = Zip-Lock Bag	P = natural HDPE plastic bottle	Container Type: J = solvent washed, acid rinsed, Tefton sealed glass jar S = solvent washed, acid rinsed glass bottle			Tig Salke	Trip blonk	qnj	GW BHSM	WW BH2M	GW BHIM	D		Laboratory:	19 Hope Street, Melrose Park	Sheet_1_of_1_
Geotechnical)		BB = Bulk Bag	3 69 1	d, Tefton se d glass bott			6	5	4	W	N	-	ō	Laboratory	SGS Australia Unit 16, 33 Ma ALEXANDRIA P: 02 8594 040	ose Park	
ā	,	S			aled glass jar e					SIP/VC	+		SIPILL	Туре	Container	SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499		
COC June 2021 FORM v 5 - SGS	Ph: 9516 0722	PYRMONT NSW 2009		2	LPiL			t t			2		0 3115/23 AM	Date Time	Sampling	eet, 5 594 0499	E26047	Designt
s n.au		009		KODAL	bortio								~	SOIL			ç	
IMP(Please	Date	Signature	Print	Sample	Invest			K	-	<		-	×	WATE	ER			Sample Matrix
IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au		lure		Sampler's Name (EI):	Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.					1			×	0.45 1	um fie	ld filtered		e Matri
ANT: aborato	11	1		e (EI):	attest									отн				×
ry resul	61:		Antony Lo		that the									HM A	/TRI	H/BTEX/PAHs CB/Asbestos		
ts to: la	23		6		se sam				_		5		\times	1		H/BTEX/PAHs		
ıb@e					ples we					×				HM ^A	/TRI	H/BTEX		41
iaustr			-	R	proce			5	X	_	4			BTE>				-
alia.c	Date 3	Signature	Print	Received by (SGS):	procedures.						2		8	VOC				4
om.a	115	1	C	by (SG	accord				-	-				Asbe				-
 C	12	4	Van	s):	dance v				-	-						Quantification		-
			5		vith sta											Natural Material		-
16	F		1		indard				-	-				(TRH/	BTEX	/PAHs)		
 · · [4				El field			-	-		2			(HM ^A	/pH /	EC / Foreign M		Analysis
 5	þ				sampl				-		5		*	Dewa	itering	Suite		- Sis
				S	ing	_		0 -	-				_	pH / p	H per	oxide		
	2	3.	2	ampler		_	M	<u> </u>	-					sPOC				
		010	ple	's Com	-		24	5 -	-							Reducible Sulfu		
		12	lense	Sampler's Comments:	Report		SE248519	. —	-		4		-7			<i>Lyanide</i>		
		04	0		vith El		1ey		-				_	pH/C	CEC (cation exchange)	
		0,4	000		Waste		COC		-				_	pH / E	EC (ek	ectrical conducti	vity)	
	1	5	~		Classif		()							Sulpha	ate / C	hloride		
		2	10		Report with El Waste Classification Table									Lead				
		0	-		Table									TCLP	HM ^B	/ PAH		
			to on it when	1		72 Hours Other	24 Hours	TURNAROUND	Total Phenol	TRH (F1, F2, F3, F4) BTEX	Total Cyanide Metals (Al, As, Cd, Cr, Cu. Pb. Ho. Ni. 7n)	Hardness	Dewatering Suite	Lead Mercury Nickel	Cadmium	Mercury Nickel Znc HM ® Arsenic	Arsenic Cadmium Chromium Copper	Comments

ource: SE_Autoscan.pdf page: 1 SGS Ref: SE248519_COC

, 16/23 P 3.08

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Sergio Raposeira	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E26047 19 Hope Street, Melrose Park	Samples Received	Wed 31/5/2023	
Order Number	E26047	Report Due	Thu 8/6/2023	
Samples	6	SGS Reference	SE248519	

SUBMISSION DETAILS

This is to confirm that 6 samples were received on Wednesday 31/5/2023. Results are expected to be ready by COB Thursday 8/6/2023. Please quote SGS reference SE248519 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 6 Water 1/6/2023@3:08pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 17.2C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number. 2562/14420. Report No.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia **t** Australia **f**

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E26047 19 Hope Street, Melrose Park

SUMMAR	Y OF ANALYSIS			1		1			
No.	Sample ID	Conductivity and TDS by Calculation - Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	pH in water	Total Dissolved Solids (TDS) in water	Total Phenolics in Water	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	GWBH1M	1	23	1	1	1	9	77	7
002	GWBH2M	1	23	1	1	1	9	77	7
003	GWBH3M	1	23	1	1	1	9	77	7
004	QD1	-	-	-	-	-	9	11	7
005	Trip blank	-	-	-	-	-	-	11	-
006	Trip Spike	-	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E26047 19 Hope Street, Melrose Park

SUMMAR'	Y OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	Total Cyanide in water by Discrete Analyser	Trace Metals (Dissolved) in Water by ICPMS	Turbidity
001	GWBH1M	1	3	1	8	1
002	GWBH2M	1	3	1	8	1
003	GWBH3M	1	3	1	8	1
004	QD1	1	-	-	7	-

_ CONTINUED OVERLEAF

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Per- and Polyfluoroalkyl Substances (PFAS) in
001	GWBH1M	56
002	GWBH2M	56
003	GWBH3M	56

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E26047 19 Hope Street, Melrose Park

Appendix H – Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope Street Melrose Park	SGS Reference	SE248200 R0
Order Number	E26047	Date Received	26/5/2023
Samples	26	Date Reported	6/6/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number. 2562/14420. Report No. ME334448.

MA-1523: Majority of surrogate and spike recoveries within acceptance criteria.

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin . Sample # 3: Asbestos found in approx 10x5x3mm cement sheet fragments X6.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kmln

Ly Kim HA Organic Section Head

Bennet LO Senior Chemist

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

Huong CRAWFORD Production Manager

Kamrul AHSAN Senior Chemist

Senior Chen

hon

Shane MCDERMOTT

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

SE248200 R0

VOC's in Soil [AN433] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 25/5/2023 SE248200.001	- 25/5/2023 SE248200.002	- 26/5/2023 SE248200.003	- 25/5/2023 SE248200.004	- 26/5/2023 SE248200.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1	<1
Chloromethane	mg/kg	1	<1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1	<1
Chloroethane	mg/kg	1	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	<1	<1
Acetone (2-propanone)	mg/kg	10	<10	<10	<10	<10	<10
lodomethane	mg/kg	5	<5	<5	<5	<5	<5
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acrylonitrile Dichloromethane (Methylene chloride)	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Allyl chloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon disulfide	mg/kg	0.5	<0.1	<0.5	<0.1	<0.1	<0.1
trans-1,2-dichloroethene		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MtBE (Methyl-tert-butyl ether) 1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	10	<10	<10	<10	<10	<10
Vinyl acetate* cis-1,2-dichloroethene	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromochloromethane		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform (THM)	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,2-dichloropropane 1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene Carbon tetrachloride	mg/kg						
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1.2-dichloropropane	mg/kg	0.1					<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-nitropropane	mg/kg	10	<10	<10	<10	<10	<10
Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromochloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-hexanone (MBK)	mg/kg	5	<5	<5	<5	<5	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1	<1
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE248200 R0

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total VOC*	mg/kg	24	<24	<24	<24	<24	<24
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	<3.0	<3.0
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	<1.8
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	<1.8

SE248200 R0

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 26/5/2023	- 26/5/2023	- 26/5/2023	- 26/5/2023	- 26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1	<1
Chloromethane	mg/kg	1	<1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1	<1
Chloroethane	mg/kg	1	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	<1	<1
Acetone (2-propanone)	mg/kg	10	<10	<10	<10	<10	<10
Iodomethane	mg/kg	5	<5	<5	<5	<5	<5
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acrylonitrile	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Allyl chloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Vinyl acetate*	mg/kg	10	<10	<10	<10	<10	<10
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-nitropropane	mg/kg	10	<10	<10	<10	<10	<10
Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromochloromethane (THM) 2-hexanone (MBK)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg						
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1		<0.1	<0.1	<0.1	
1,1,1,2-tetrachloroethane Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Styrene (Vinyl benzene)	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<0.1	<0.1	<0.1	<1
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Di Gili Guerizene	iiig/kg	U. I	NU. I	NU. 1	NU.1	NU. 1	50.1

SE248200 R0

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total VOC*	mg/kg	24	<24	<24	<24	<24	<24
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	<3.0	<3.0
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	<1.8
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	<1.8

SE248200 R0

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 25/5/2023 SE248200.012	- 26/5/2023 SE248200.013	- 25/5/2023 SE248200.014	- 26/5/2023 SE248200.015	- 26/5/2023 SE248200.016
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1	<1
Chloromethane	mg/kg	1	<1	<1	<1	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1	<1	<1	<1	<1	<1
Chloroethane	mg/kg	1	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	<1	<1
Acetone (2-propanone)	mg/kg	10	<10	<10	<10	<10	<10
Iodomethane	mg/kg	5	<5	<5	<5	<5	<5
1.1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acrylonitrile	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichloromethane (Methylene chloride)		0.5	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg		<0.5	<0.1	<0.3		
Allyl chloride	mg/kg	0.1				<0.1	<0.1
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Vinyl acetate*	mg/kg	10	<10	<10	<10	<10	<10
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene, TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-nitropropane	mg/kg	10	<10	<10	<10	<10	<10
Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromochloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-hexanone (MBK)	mg/kg	5	<5	<5	<5	<5	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1	<1
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE248200 R0

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total VOC*	mg/kg	24	<24	<24	<24	<24	<24
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	<3.0	<3.0
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	<1.8
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	<1.8

SE248200 R0

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3	Trip Blank	Trip Spike
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 26/5/2023	- 26/5/2023	- 26/5/2023	- 26/5/2023	- 26/5/2023
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023	SE248200.025	SE248200.026
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[96%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[97%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[100%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[97%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[98%]
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	-	-
Chloromethane	mg/kg	1	<1	<1	<1	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromomethane	mg/kg	1	<1	<1	<1	-	-
Chloroethane	mg/kg	1	<1	<1	<1	-	-
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	-	-
Acetone (2-propanone)	mg/kg	10	<10	<10	<10	-	-
Iodomethane	mg/kg	5	<5	<5	<5	-	-
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Acrylonitrile	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	-	-
Allyl chloride	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	<0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Vinyl acetate*	mg/kg	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Chloroform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2-nitropropane	mg/kg	10	<10	<10	<10	-	-
Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	-	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Dibromochloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2-hexanone (MBK)	mg/kg	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	-	-
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
		0.1			•		

SE248200 R0

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3	Trip Blank	Trip Spike
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023	SE248200.025	SE248200.026
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Total VOC*	mg/kg	24	<24	<24	<24	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	-	-

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	26/5/2023 SE248200.006	26/5/2023 SE248200.007	26/5/2023 SE248200.008	26/5/2023	26/5/2023 SE248200.010
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			25/5/2023	26/5/2023	25/5/2023	26/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	25/5/2023 SE248200.001	25/5/2023 SE248200.002	26/5/2023 SE248200.003	25/5/2023 SE248200.004	26/5/2023 SE248200.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 26/5/2023 SE248200.006	SOIL - 26/5/2023 SE248200.007	SOIL - 26/5/2023 SE248200.008	SOIL - 26/5/2023 SE248200.009	SOIL - 26/5/2023 SE248200.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			25/5/2023	26/5/2023	25/5/2023	26/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	150	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	150	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	150	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 29/5/2023 (continued)

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 29/5/2023 (continued)

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
					0.011	0.01	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			25/5/2023	26/5/2023	25/5/2023	26/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.5</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.5	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.6</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	0.6	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.5</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.5	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	2.6	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	2.6	<0.8

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8

SE248200 R0

OC Pesticides in Soil [AN420] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 29/5/2023 (continued)

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 25/5/2023 SE248200.001	SOIL - 25/5/2023 SE248200.002	SOIL - 26/5/2023 SE248200.003	SOIL - 25/5/2023 SE248200.004	SOIL - 26/5/2023 SE248200.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL - 26/5/2023	SOIL - 26/5/2023	SOIL - 26/5/2023	SOIL - 26/5/2023	SOIL - 26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			25/5/2023	25/5/2023	26/5/2023	25/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL - 26/5/2023	SOIL - 26/5/2023	SOIL - 26/5/2023	SOIL - 26/5/2023	SOIL - 26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

Total Phenolics in Soil [AN295] Tested: 1/6/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Total Phenois	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL
					-
			26/5/2023	26/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5

Total Cyanide in soil by Discrete Analyser [AN077/AN287] Tested: 1/6/2023

			HA3_0.2-0.3	BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.010	SE248200.012	SE248200.013	SE248200.014	SE248200.015
Total Cyanide	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			TP1_0.7-0.8	TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL	SOIL
						- 26/5/2023
PARAMETER	UOM	LOR	SE248200.016	SE248200.017	SE248200.019	SE248200.023
Total Cyanide	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5

SE248200 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Arsenic, As	mg/kg	1	8	6	6	7	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	16	15	16	17	24
Copper, Cu	mg/kg	0.5	10	11	6.9	16	4.0
Lead, Pb	mg/kg	1	30	21	31	130	30
Nickel, Ni	mg/kg	0.5	4.2	11	4.5	4.4	2.4
Zinc, Zn	mg/kg	2	47	28	49	140	13

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 26/5/2023	- 26/5/2023	- 26/5/2023	- 26/5/2023	- 26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Arsenic, As	mg/kg	1	6	8	11	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	28	22	33	14
Copper, Cu	mg/kg	0.5	35	18	5.2	23	24
Lead, Pb	mg/kg	1	61	56	25	29	15
Nickel, Ni	mg/kg	0.5	3.3	14	1.7	31	11
Zinc, Zn	mg/kg	2	79	72	35	130	62

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 25/5/2023	- 26/5/2023	- 25/5/2023	- 26/5/2023	- 26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
Arsenic, As	mg/kg	1	6	10	6	6	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	14	25	21	21	24
Copper, Cu	mg/kg	0.5	7.3	4.8	6.1	7.8	1.7
Lead, Pb	mg/kg	1	15	24	28	74	20
Nickel, Ni	mg/kg	0.5	4.3	1.3	4.4	2.7	2.3
Zinc, Zn	mg/kg	2	16	13	77	23	8.7

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL
			- 26/5/2023	- 26/5/2023	- 26/5/2023
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023
Arsenic, As	mg/kg	1	6	6	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	19	8.4	16
Copper, Cu	mg/kg	0.5	3.2	18	7.3
Lead, Pb	mg/kg	1	15	33	22
Nickel, Ni	mg/kg	0.5	1.7	8.8	3.3
Zinc, Zn	mg/kg	2	9.5	68	26

Mercury in Soil [AN312] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.62	<0.05

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3
			SOIL	SOIL	SOIL
			-	-	-
			26/5/2023	26/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023
Mercury	mg/kg	0.05	<0.05	0.08	<0.05

Fibre Identification in soil [AS4964/AN602] Tested: 1/6/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			25/5/2023	25/5/2023	26/5/2023	25/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Asbestos Detected	No unit	-	No	No	Yes	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 1/6/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Total Sample Weight*	g	1	717	936	455	812	295
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	0.144	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	0.032	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	0.032	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	CRY	NAD	NAD

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			26/5/2023	26/5/2023	26/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009
Total Sample Weight*	g	1	157	1022	736	928
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD	NAD

SE248200 R0

Moisture Content [AN002] Tested: 29/5/2023

			BH1M_0.2-0.3	BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
% Moisture	%w/w	1	11.5	13.6	14.9	17.3	21.8

			TP1_0.2-0.3	TP2_0.2-0.3	TP3_0.2-0.3	TP6_0.2-0.3	HA3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.006	SE248200.007	SE248200.008	SE248200.009	SE248200.010
% Moisture	%w/w	1	18.4	9.9	16.5	7.1	22.3

			BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	BH5_0.7-0.8	TP1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							26/5/2023
PARAMETER	UOM	LOR	SE248200.012	SE248200.013	SE248200.014	SE248200.015	SE248200.016
% Moisture	%w/w	1	18.0	16.9	19.9	21.6	18.5

			TP2_0.7-0.8	TP4_0.7-0.8	BH1M_1.2-1.3	Trip Blank
			SOIL	SOIL	SOIL	SOIL
						-
						26/5/2023
PARAMETER	UOM	LOR	SE248200.017	SE248200.019	SE248200.023	SE248200.025
% Moisture	%w/w	1	17.8	8.3	19.3	<1.0

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples [MA-1523] Tested: 2/6/2023

				BH2M_0.2-0.3	BH3M_0.2-0.3	BH4_0.2-0.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
		1.05	25/5/2023	25/5/2023	26/5/2023	25/5/2023	26/5/2023
PARAMETER	UOM	LOR	SE248200.001	SE248200.002	SE248200.003	SE248200.004	SE248200.005
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016	<0.0016		<0.0016	
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	<0.0032	<0.0032	<0.0032	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	0.0024
Sum PFOS and PFHXS	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	0.0024
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	0.0024
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	0.0024
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples [MA-1523] Tested: 2/6/2023 (continued)

			TP3_0.2-0.3	TP6_0.2-0.3
			SOIL	SOIL
PARAMETER	UOM	LOR	26/5/2023	26/5/2023 SE248200.009
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	SE248200.008	<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	< 0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	< 0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	<0.0008
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	< 0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	< 0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	<0.0016	0.0017
Sum PFOS and PFHXS	mg/kg	0.0016	<0.0016	0.0017
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	<0.0016	0.0017
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	<0.0016	0.0017
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	<0.08

SE248200 R0

Field pH for Acid Sulphate Soil [AN104] Tested: 31/5/2023

			BH1M_0.7-0.8	BH2M_0.7-0.8	BH3M_0.7-0.8	BH4_0.7-0.8	TP3_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- SUIL	- 5012	- 5012	- SOIL
PARAMETER	UOM	LOR	SE248200.011	SE248200.012	SE248200.013	SE248200.014	SE248200.018
pHf	pH Units	-	7.6	4.9	4.9	5.9	5.6
pHfox	pH Units	-	7.2	4.6	4.6	5.6	3.2
Reaction Rate (pHfox)*	No unit	-	2	1	1	1	3
pH Difference*	pH Units	-10	0.4	0.3	0.3	0.3	2.4

			TP5_0.7-0.8	TP6_0.7-0.8	HA3_0.7-0.8	BH1M_1.2-1.3	TP3_1.2-1.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248200.020	SE248200.021	SE248200.022	SE248200.023	SE248200.024
pHf	pH Units	-	6.5	4.8	5.3	7.4	5.9
pHfox	pH Units	-	6.8	3.6	4.7	5.3	4.6
Reaction Rate (pHfox)*	No unit	-	1	3	2	1	2
pH Difference*	pH Units	-10	-0.3	1.3	0.5	2.1	1.3

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN077	Hydrogen cyanide is liberated from an acidified alkali soil extract by distillation and purging with air. The hydrogen cyanide gas is then collected by passing it through a sodium hydroxide scrubbing solution. The scrubbing solution will then be analysed for cyanide by the appropriate method.
AN104	pHF is determined on an extract of approximately 2g of as received sample in approximately 10 mL of deionised water with pH determined after standing 30 minutes.
AN104	pHFox is determined on an extract of approximately 2g of as received sample with a few mLs of 30% hydrogen peroxide (adjusted to pH 4.5 to 5.5) with the extract reaction being rated from slight to extreme, with pH determined after reaction is complete and extract has cooled. Referenced to ASS Laboratory Methods Guidelines, method 23Af-Bf, 2004.
	 0 No Reaction 1 Slight Reaction 2 Moderate Reaction 3 Strong/High Reaction 4 Extreme/Vigorous Reaction (gas evolution and heat generation)
AN287	A buffered distillate or water sample is treated with chloramine/barbituric acid reagents and the intensity of the colour developed is proportional to the cyanide concentration by DA.
AN295	For Soil, a 1:10 NaOH extraction is made and analysed after 16 hours. The soil extract or water sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4
MA-1523	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

NVL N IS II LNR S

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) sergio.raposeira@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E26047 19 Hope Street Melrose Park E26047 10	SGS Reference Date Received Date Reported	SE248200 R0 26 May 2023 06 Jun 2023

· COMMENTS ·

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number. 2562/14420. Report No. ME334448.

MA-1523: Majority of surrogate and spike recoveries within acceptance criteria.

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin . Sample # 3: Asbestos found in approx 10x5x3mm cement sheet fragments X6.

SIGNATORIES -

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

RESULTS -

Fibre Identification in soil

Method AS4964/AN602

Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE248200.001	BH1M_0.2-0.3	Soil	717g Clay, Sand, Soil, Rocks	25 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248200.002	BH2M_0.2-0.3	Soil	936g Clay, Sand, Soil, Rocks	25 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248200.003	BH3M_0.2-0.3	Soil	455g Clay, Sand, Soil, Rocks	26 May 2023	Chrysotile Asbestos Found at RL of 0.1g/kg	<0.01
SE248200.004	BH4_0.2-0.3	Soil	812g Clay, Sand, Soil, Rocks	25 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248200.005	BH5_0.2-0.3	Soil	295g Clay, Sand, Rocks	26 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248200.006	TP1_0.2-0.3	Soil	157g Clay, Sand, Soil, Rocks	26 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248200.007	TP2_0.2-0.3	Soil	1022g Clay, Sand, Soil, Rocks	26 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248200.008	TP3_0.2-0.3	Soil	736g Clay, Sand, Soil, Rocks	26 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248200.009	TP6_0.2-0.3	Soil	928g Clay, Sand, Soil, Rocks	26 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248200.010	HA3_0.2-0.3	Soil	225g Clay, Sand, Rocks	26 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles *** Indicates that both * and ** apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

	Huong Crawford		Adam Atkinson
Contact		Manager	AdamAtkinson
Client	SGS I&E SYDNEY	Laboratory	SGS Melbourne EH&S
Address	Unit 16, 33 Maddox Street	Address	10/585 Blackburn Road
	Alexandria		Notting Hill Victoria 3168
	NSW 2015		
elephone	02 8594 0400	Telephone	+61395743200
- acsimile	02 8594 0499	Facsimile	+61395743399
Email	au.environmental.sydney@sgs.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	E26047 19 Hope Street Melrose Park	SGS Reference	ME334448 R0
Order Number	SE248200	Date Received	30 May 2023
Samples	26	Date Reported	02 Jun 2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562 (14420/22793/24472).

SE248200.010 was also received but not included on the XML. Sydney advised in email on 31/5/23 to not test SE248200.010 MA-1523: Majority of surrogate and spike recoveries within acceptance criteria.

SIGNATORIES _

Som Wan

Susan WAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Bldg 10, 585 Bl

Bldg 10, 585 Blackburn Rd Notting Hill VIC

		Sample Number Sample Matrix	ME334448.001 Soil	ME334448.002 Soil	ME334448.003 Soil	ME334448.004 Soil
		Sample Date	25 May 2023	25 May 2023	26 May 2023	25 May 2023
		Sample Name	SE248200.001	SE248200.002	SE248200.003	SE248200.004
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid S	amples Method	: MA-1523 Te	sted: 31/5/2023			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	<0.0008	<0.0008	<0.0008
Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA)	mg/kg mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	<0.0016	< 0.0016	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	<0.0032	<0.0032	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Sum PFOS and PFHXS Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Sum of enHealth PFAS (PFHxS+PFOS+PFOA) Perfluorononane sulfonate (PFNS)	mg/kg mg/kg	0.0016	<0.0016	<0.0018	<0.0016	<0.0016
Perfluorodecane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	<0.08	<0.08	<0.08
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	108 102	110 100	112 108	110
(13C5-PFPeA) Isotopically Labelled Internal Recovery (13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	116	106	106	105
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%		135	118	111	115
(13C4_PFOA) Isotopically Labelled Internal Recovery	%		120	106	120	110
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	109	114	123	118
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	108	128	93	105
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	125	110	105	100
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	111	110	126	116
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	95	105	114	76
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	36	47	44	33
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	99	120	103	111
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	111	126	103	115
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	122	107	126	132
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	141	135	131	126
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	145	140	143	119
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	86	130 80	109 124	101
(13C8-PFOSA) Isotopically Labelled Internal Recovery (D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%		69	85	124	85
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	86	70	112	91
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	108	97	122	102
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	108	90	110	118
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%		99	103	148	116
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	119	123	148	93

	S	nple Number ample Matrix Sample Date ample Name	Soil 25 May 2023	ME334448.002 Soil 25 May 2023 SE248200.002	ME334448.003 Soil 26 May 2023 SE248200.003	ME334448.004 Soil 25 May 2023 SE248200.004			
Parameter	Units	LOR							
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samp	les Method: MA	A-1523 Te	sted: 31/5/2023	(continued)					
Moisture Content Method: AN002 Tested: 31/5/2023									
% Moisture	%w/w	1	12.8	18.6	15.8	30.7			

		Sample Number Sample Matrix	ME334448.005 Soil	ME334448.006 Soil	ME334448.007 Soil	ME334448.008 Soil
		Sample Date Sample Name		26 May 2023 SE248200.006	26 May 2023 SE248200.007	26 May 2023 SE248200.008
Parameter Per- and Polyfluoroalkyl Substances (PFAS) in Solid Si	Units amples Method	LOR I: MA-1523 Te	sted: 31/5/2023			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	_		<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016			<0.0016
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	_	-	<0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	-	-	<0.0008
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	-	-	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	0.0024	-	-	<0.0016
Sum PFOS and PFHXS	mg/kg	0.0016	0.0024	-	-	<0.0016
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	0.0024	-	-	<0.0016
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	0.0024	-	-	<0.0016
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	-	-	<0.0016
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	<0.0016	-	-	<0.0016
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	-	-	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	-	-	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	-	-	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	-	-	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	-	-	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	-	-	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	-	-	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	-	-	<0.08
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	111	-	-	112
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	112	-	-	111
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery	%		115	-	-	114
(13C4-PFOA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery	%		125	-	_	108
(13C9-PFNA) Isotopically Labelled Internal Recovery	%		117			98
(13C6-PFDA) Isotopically Labelled Internal Recovery	%		110			110
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%		130			123
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%		118	-	-	123
(13C2_FFTeDA) Isotopically Labelled Internal Recovery	%		104	-	-	129
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%		28	-	-	63
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	_	98	-	-	119
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	_	114	-	-	104
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	89	-	-	90
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	110	-	-	122
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	121	-	-	136
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	102	-	-	98
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	76	-	-	89
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	63	-	-	70
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	53	-	-	64
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	71	-	-	83
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	59	-	-	77
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	84	-	-	90
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	_	79	-	-	76

	Sa	nple Number ample Matrix Sample Date ample Name	Soil 26 May 2023	ME334448.006 Soil 26 May 2023 SE248200.006	ME334448.007 Soil 26 May 2023 SE248200.007	ME334448.008 Soil 26 May 2023 SE248200.008			
Parameter	Units	LOR							
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sam	ples Method: MA	-1523 Te	sted: 31/5/2023	(continued)					
Moisture Content Method: AN002 Tested: 31/5/2023									
% Moisture	%w/w	1	19.2	-	-	22.9			

		Sample Number Sample Matrix Sample Date	ME334448.009 Soil 26 May 2023	ME334448.010 Soil 26 May 2023	ME334448.011 Soil 25 May 2023	ME334448.012 Soil 25 May 2023
		Sample Name	SE248200.009	SE248200.010	SE248200.011	SE248200.012
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid S	amples Method	I: MA-1523 Te	sted: 31/5/2023			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	-	-	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA)	mg/kg mg/kg	0.0016	<0.0016	-	-	-
Perfluorohexadecanoic acid (PFHzDA)	mg/kg	0.0010	<0.0032			-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	_	_	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	-	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	0.0017	-	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	0.0017	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	0.0017	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	0.0017	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	-	-	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	-	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	-	-	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	-	-	-
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	<0.0016	-	-	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	-	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA) N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	-	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg mg/kg	0.008	<0.008	_	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016			
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	_	_	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	-	_	-
Total of PFAS (n=30)	mg/kg	0.08	<0.08	-	-	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	114	-	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	111	-	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	102	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	107	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	94	-	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	101	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	109	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	116	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	111	-	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	80	-	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	26	-	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	119	-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	140	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	106	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	129	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	147 129	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery (13C8-PFOSA) Isotopically Labelled Internal Recovery	%	<u> </u>	129	-	-	-
(13C8-PFOSA) isotopically Labelled Internal Recovery (D3-N-MeFOSA) isotopically Labelled Internal Recovery	%	<u> </u>	87	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	76		-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	99	-		-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	107	-	-	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	123	-	-	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	104	-	-	-
		I		1		ı]

	Sa	nple Number ample Matrix Sample Date ample Name	Soil 26 May 2023	ME334448.010 Soil 26 May 2023 SE248200.010	ME334448.011 Soil 25 May 2023 SE248200.011	ME334448.012 Soil 25 May 2023 SE248200.012		
Parameter	Units	LOR						
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samp	les Method: MA	-1523 Tes	sted: 2/6/2023	(continued)				
Moisture Content Method: AN002 Tested: 31/5/2023								
% Moisture	%w/w	1	9.1	-	-	-		

		Sample Number Sample Matrix	Soil	ME334448.014 Soil	ME334448.015 Soil	ME334448.016 Soil
		Sample Date Sample Name		25 May 2023 SE248200.014	26 May 2023 SE248200.015	26 May 2023 SE248200.016
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid S	amples Method	i: MA-1523 Te	sted: 2/6/2023			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	-	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	-	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	-	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	-	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-	-	-	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-	-	-	-
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-	-	-
Perfluorohexadecanoic acid (PFHzDA)	mg/kg mg/kg	0.0010	-		-	-
Perfluorobutane sulfonate (PFRS)	mg/kg	0.0032	-	-	-	-
Perfluoropentane sulfonate (PFPs)	mg/kg	0.0016	-	-	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-	-	
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	_	-	-	_
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	-	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-	-	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	-	-	-	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	-	-	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	-	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg mg/kg	0.018	-		-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008			-	
Total of PFAS (n=30)	mg/kg	0.08		_	-	
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-		-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	_	_	_	-	_
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	_	-	-	_
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%		-	-	-	
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery (D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%		-	-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%		-		-	
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-	-	
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	_	_	_	-	_
Contraction of the second main and the second secon	/0					

	S	nple Number ample Matrix Sample Date ample Name	ME334448.013 Soil 26 May 2023 SE248200.013	ME334448.014 Soil 25 May 2023 SE248200.014	ME334448.015 Soil 26 May 2023 SE248200.015	ME334448.016 Soil 26 May 2023 SE248200.016
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samp	es Method: MA	-1523 Tes	ted: 2/6/2023	(continued)		
Moisture Content Method: AN002 Tested: 2/6/2023						
% Moisture	%w/w	1	-	-	-	-

		Sample Number Sample Matrix Sample Date Sample Name	ME334448.017 Soil 26 May 2023 SE248200.017	ME334448.018 Soil 26 May 2023 SE248200.018	ME334448.019 Soil 26 May 2023 SE248200.019	ME334448.020 Soil 26 May 2023 SE248200.020
Baramatar	Unito					
Parameter Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	Units amples Method:	LOR : MA-1523 Tes	sted: 2/6/2023			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	-	-
Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA)	mg/kg mg/kg	0.0016	-	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	_		-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	_	-	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	_	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	-	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-	-	-	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-	-	-	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-	-	-	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-	-	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-	-	-	-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	-	-	-	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-	-	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	-	-
Perfluorodecane sulfonate (PFDS) Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016		_		
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	_	-	-
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	-	-	_	_
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	-	-	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	-	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-	-	-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-	-	-	-
Total of PFAS (n=30)	mg/kg	0.08	-	-	-	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C2-PFDOA) Isotopically Labelled Internal Recovery (13C2-PFDOA) Isotopically Labelled Internal Recovery	%		-	_	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery	%		-	_	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%		-	-	-	
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	_	-	_	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-

	Si	nple Number ample Matrix Sample Date ample Name	ME334448.017 Soil 26 May 2023 SE248200.017	ME334448.018 Soil 26 May 2023 SE248200.018	ME334448.019 Soil 26 May 2023 SE248200.019	ME334448.020 Soil 26 May 2023 SE248200.020
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sample	es Method: MA	-1523 Tes	ted: 2/6/2023	(continued)		
Moisture Content Method: AN002 Tested: 2/6/2023						
% Moisture	%w/w	1	-	-	-	-

		Sample Number Sample Matrix Sample Date	Soil	ME334448.022 Soil 26 May 2023	ME334448.023 Soil 26 May 2023	ME334448.024 Soil 26 May 2023
		Sample Name		SE248200.022	SE248200.023	SE248200.024
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid S	amples Method	I: MA-1523 Te	sted: 2/6/2023			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	-	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	-	-
Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	-	-
Perfluoroundecanoic acid (PFUA)	mg/kg mg/kg	0.0016	-	-	-	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016		-	-	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-	-	-	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-	-	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-	-	-	-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	-	-	-	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-	-	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	-	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-	-	-
Perfluorododecane sulfonate (PFDoS) 1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016			-	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	_	-	-	-
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	-	-	-	_
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	-	-	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	-	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-	-	-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-	-	-	-
Total of PFAS (n=30)	mg/kg	0.08	-	-	-	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%		-	-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery (D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(D5-N-EtFOSAA) isotopically Labelled Internal Recovery	%		-	-	-	-
	70		-	-	-	-

	Si	nple Number ample Matrix Sample Date ample Name	ME334448.021 Soil 26 May 2023 SE248200.021	ME334448.022 Soil 26 May 2023 SE248200.022	ME334448.023 Soil 26 May 2023 SE248200.023	ME334448.024 Soil 26 May 2023 SE248200.024
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samp	oles Method: MA	-1523 Tes	ted: 2/6/2023	(continued)		
Moisture Content Method: AN002 Tested: 2/6/2023						
% Moisture	%w/w	1	-	-	-	-

		Sample Number Sample Matrix Sample Date Sample Name	ME334448.025 Soil 26 May 2023 SE248200.025	ME334448.026 Soil 26 May 2023 SE248200.026
Parameter	Units	LOR		
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	amples Method	: MA-1523 Tes	sted: 2/6/2023	
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	_	_
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	_	
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	_	_
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	_	_
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	_	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	_	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-	-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	-	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	-
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2	mg/kg	0.0016	-	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-	-
Total of PFAS (n=30)	mg/kg	0.08	-	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	-	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-

	S	nple Numbe ample Matri: Sample Date ample Name	x Soil e 26 May 2023	ME334448.026 Soil 26 May 2023 SE248200.026
Parameter	Units	LOR		
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	amples Method: MA	-1523 T	ested: 2/6/2023	(continued)
Moisture Content Method: AN002 Tested: 2/6/2023				
% Moisture	%w/w	1	-	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture	LB062347	%w/w	1	2 - 11%

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples Method: MA-1523

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Perfluorobutanoic acid (PFBA)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluoropentanoic acid (PFPeA)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluorohexanoic acid (PFHxA)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluoroheptanoic acid (PFHpA)	LB062346	mg/kg	0.0016	<0.0016	0%	118%
Perfluorooctanoic Acid (PFOA)	LB062346	mg/kg	0.0008	<0.0008	0%	118%
Perfluorononanoic acid (PFNA)	LB062346	mg/kg	0.0016	<0.0016	0%	117%
Perfluorodecanoic acid (PFDA)	LB062346	mg/kg	0.0016	<0.0016	0%	125%
Perfluoroundecanoic acid (PFUnA)	LB062346	mg/kg	0.0016	<0.0016	0%	115%
Perfluorododecanoic acid (PFDoA)	LB062346	mg/kg	0.0016	<0.0016	0%	135%
Perfluorotridecanoic acid (PFTrDA)	LB062346	mg/kg	0.0016	<0.0016	0%	97%
Perfluorotetradecanoic acid (PFTeDA)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluorohexadecanoic acid (PFHxDA)	LB062346	mg/kg	0.0032	<0.0032	0%	NA
Perfluorobutane sulfonate (PFBS)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluoropentane sulfonate (PFPeS)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluorohexane sulfonate (PFHxS)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluoroheptane sulfonate (PFHpS)	LB062346	mg/kg	0.0016	< 0.0016	0%	NA
Perfluorooctane sulfonate (PFOS)	LB062346	mg/kg	0.0016	<0.0016	0%	100%
Sum PFOS and PFHXS	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Sum of US EPA PFAS (PFOS+PFOA)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluorononane sulfonate (PFNS)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
Perfluorodecane sulfonate (PFDS)	LB062346		0.0016	<0.0016	0%	NA
		mg/kg				
Perfluorododecane sulfonate (PFDoS) 1H,1H.2H.2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
	LB062346	mg/kg	0.0016	< 0.0016	0%	NA
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	LB062346	mg/kg	0.0016	< 0.0016	0%	NA
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	LB062346	mg/kg	0.0016	<0.0016	0%	NA
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2) (10:2 FTSA)	LB062346	mg/kg	0.0016	< 0.0016	0%	NA
Perfluoroctane sulfonamide (PFOSA)	LB062346	mg/kg	0.0016	<0.0016	0%	76%
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	LB062346	mg/kg	0.008	<0.008	0%	NA
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	LB062346	mg/kg	0.008	<0.008	0%	NA
2-(N-Methylperfluorooctane sulfonamido)-ethanol (N-MeFOSE)	LB062346	mg/kg	0.016	<0.016	0%	NA
2-(N-Ethylperfluorooctane sulfonamido)-ethanol (N-EtFOSE)	LB062346	mg/kg	0.016	<0.016	0%	NA
N-Methylperfluorooctanesulfonamidoacetic acid (N_MeFOSAA)	LB062346	mg/kg	0.008	<0.008	0%	NA
N-Ethylperfluorooctanesulfonamidoacetic Acid (N-EtFOSAA)	LB062346	mg/kg	0.008	<0.008	0%	NA
Total of PFAS (n=30)	LB062346	mg/kg	0.08	<0.08	0%	NA
(13C4-PFBA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	111%	1 - 2%	112%
(13C5-PFPeA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	105%	1%	104%
(13C5-PFHxA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	129%	4 - 17%	122%
(13C4-PFHpA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	127%	0 - 7%	105%
(13C4_PFOA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	134%	6 - 9%	108%
(13C9-PFNA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	106%	7 - 14%	84%
(13C6-PFDA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	105%	6 - 48%	130%
(13C7-PFUdA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	128%	9 - 17%	130%
(13C2-PFDoA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	128%	4 - 28%	137%
(13C2_PFTeDA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	127%	25 - 34%	115%
(13C2-PFHxDA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	71%	14 - 31%	63%
(13C3-PFBS) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	101%	1 - 5%	111%
(13C3-PFHxS) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	117%	2 - 5%	116%
(13C8-PFOS) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	96%	24 - 36%	88%
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	98%	3 - 10%	133%
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	99%	2 - 7%	111%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples Method: MA-1523 (continued)

				MB	DUP %RPD	LCS %Recovery
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	77%	31%	114%
(13C8-PFOSA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	74%	8 - 14%	83%
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	52%	2 - 25%	64%
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	55%	19 - 23%	54%
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	63%	3 - 26%	85%
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	50%	37 - 52%	53%
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	101%	23 - 50%	81%
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery Standard	LB062346	%	-	97%	6 - 43%	69%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
MA-1523	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES .

++

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. ↑↓ Raised or Lowered Limit of Reporting * NATA accreditation does not cover the performance of this service. QFH QC result is above the upper tolerance

Indicative data, theoretical holding time exceeded. - The sample was not analysed for this analyte Indicates that both * and ** apply. NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope St Melrose Park	SGS Reference	SE248520 R0
Order Number	E26047	Date Received	31/5/2023
Samples	8	Date Reported	9/6/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

then

Huong CRAWFORD Production Manager

Shane MCDERMOTT

Inorganic/Metals Chemist

Kamrul AHSAN Senior Chemist

Acm/n/

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE248520 R0

VOC's in Soil [AN433] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	31/5/2023 SE248520.001	31/5/2023 SE248520.002	31/5/2023 SE248520.003	31/5/2023 SE248520.004	31/5/2023 SE248520.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	-	-
Chloromethane	mg/kg	1	<1	<1	<1	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromomethane	mg/kg	1	<1	<1	<1	-	-
Chloroethane	mg/kg	1	<1	<1	<1	-	-
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	-	-
Acetone (2-propanone)	mg/kg	10	<10	<10	<10	-	-
lodomethane	mg/kg	5	<5	<5	<5	-	-
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Acrylonitrile	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	-	-
Allyl chloride	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	<0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Vinyl acetate*	mg/kg	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Chloroform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2-nitropropane	mg/kg	10	<10	<10	<10	-	-
Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	-	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Dibromochloromethane (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2-hexanone (MBK)	mg/kg	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	-	-
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-

SE248520 R0

VOC's in Soil [AN433] Tested: 2/6/2023 (continued)

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003	SE248520.004	SE248520.005
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-	-
Total VOC*	mg/kg	24	<24	<24	<24	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	-	-

SE248520 R0

VOC's in Soil [AN433] Tested: 2/6/2023 (continued)

			Trip Blank	Trip Spike
			SOIL	SOIL
			- 31/5/2023	- 31/5/2023
PARAMETER	UOM	LOR	SE248520.006	SE248520.007
Benzene	mg/kg	0.1	<0.1	[107%]
Toluene	mg/kg	0.1	<0.1	[90%]
Ethylbenzene	mg/kg	0.1	<0.1	[123%]
m/p-xylene	mg/kg	0.2	<0.2	[122%]
o-xylene	mg/kg	0.1	<0.1	[120%]
Total Xylenes*	mg/kg	0.3	<0.3	
Total BTEX*	mg/kg	0.6	<0.6	-
Naphthalene (VOC)*	mg/kg	0.1	<0.1	-
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-
Chloromethane	mg/kg	1	_	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	-
Bromomethane	mg/kg	1	-	-
Chloroethane	mg/kg	1	-	-
Trichlorofluoromethane	mg/kg	1	-	-
Acetone (2-propanone)	mg/kg	10	-	-
lodomethane	mg/kg	5	-	-
1,1-dichloroethene	mg/kg	0.1	-	-
Acrylonitrile	mg/kg	0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-
Allyl chloride	mg/kg	0.1	-	-
Carbon disulfide	mg/kg	0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-
1,1-dichloroethane	mg/kg	0.1	-	-
Vinyl acetate*	mg/kg	10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	-
Bromochloromethane	mg/kg	0.1	_	-
Chloroform (THM)	mg/kg	0.1	_	_
2,2-dichloropropane	mg/kg	0.1	-	-
1.2-dichloroethane	mg/kg	0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1		-
1,1-dichloropropene	mg/kg	0.1		-
Carbon tetrachloride	mg/kg	0.1		
Dibromomethane		0.1		
	mg/kg			-
1,2-dichloropropane	mg/kg	0.1		
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	-	-
2-nitropropane	mg/kg	10	-	-
Bromodichloromethane (THM)	mg/kg	0.1	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	-
cis-1,3-dichloropropene	mg/kg	0.1	-	-
trans-1,3-dichloropropene	mg/kg	0.1	-	-
1,1,2-trichloroethane	mg/kg	0.1	-	-
1,3-dichloropropane	mg/kg	0.1	-	-
Dibromochloromethane (THM)	mg/kg	0.1	-	-
2-hexanone (MBK)	mg/kg	5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-
Chlorobenzene	mg/kg	0.1	-	-
Bromoform (THM)	mg/kg	0.1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1		-
Isopropylbenzene (Cumene)	mg/kg	0.1		-
Bromobenzene	mg/kg	0.1	-	-
DivinoportZelle	iiig/kg	0.1	-	-

SE248520 R0

VOC's in Soil [AN433] Tested: 2/6/2023 (continued)

			Trip Blank	Trip Spike
			SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.006	SE248520.007
n-propylbenzene	mg/kg	0.1	-	-
2-chlorotoluene	mg/kg	0.1	-	-
4-chlorotoluene	mg/kg	0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	-
tert-butylbenzene	mg/kg	0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	-
sec-butylbenzene	mg/kg	0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	-
p-isopropyltoluene	mg/kg	0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	-
n-butylbenzene	mg/kg	0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	-
Total VOC*	mg/kg	24	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003	SE248520.004	SE248520.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003	SE248520.004	SE248520.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	31/5/2023 SE248520.001	31/5/2023 SE248520.002	31/5/2023 SE248520.003
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
			-	-	-
		1.05	31/5/2023	31/5/2023	31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
					31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

Total Phenolics in Soil [AN295] Tested: 6/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5

Total Cyanide in soil by Discrete Analyser [AN077/AN287] Tested: 6/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Total Cyanide	mg/kg	0.5	<0.5	<0.5	<0.5

SE248520 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
			31/5/2023	31/5/2023	31/5/2023	31/5/2023	31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003	SE248520.004	SE248520.005
Arsenic, As	mg/kg	1	5	3	5	4	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	10	38	31	12
Copper, Cu	mg/kg	0.5	18	2.1	24	19	3.3
Lead, Pb	mg/kg	1	76	10	24	25	12
Nickel, Ni	mg/kg	0.5	3.4	1.6	41	31	2.7
Zinc, Zn	mg/kg	2	120	7.5	71	63	12

SE248520 R0

Mercury in Soil [AN312] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003	SE248520.004	SE248520.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

SE248520 R0

Moisture Content [AN002] Tested: 2/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3	QD1	QD2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003	SE248520.004	SE248520.005
% Moisture	%w/w	1	9.3	8.4	11.6	12.8	9.1

			Trip Blank
			SOIL
PARAMETER	UOM	LOR	SE248520.006
% Moisture	%w/w	1	<1.0

Fibre Identification in soil [AS4964/AN602] Tested: 8/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 8/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
			- 31/5/2023	- 31/5/2023	- 31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Total Sample Weight*	g	1	509	553	498
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD

VOCs in Water [AN433] Tested: 6/6/2023

			QR1
PARAMETER	UOM	LOR	WATER - 31/5/2023 SE248520.008
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene (VOC)*	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 6/6/2023

			QR1
			WATER
			31/5/2023
PARAMETER	UOM	LOR	SE248520.008
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50

SE248520 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 2/6/2023

			QR1
			WATER
			31/5/2023
PARAMETER	UOM	LOR	SE248520.008
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

SE248520 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 2/6/2023

			QR1 WATER
PARAMETER	UOM	LOR	31/5/2023 SE248520.008
Naphthalene	µg/L	0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1
Acenaphthene	μg/L	0.1	<0.1
Fluorene	µg/L	0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1
Anthracene	µg/L	0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1
Pyrene	µg/L	0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1
Chrysene	µg/L	0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1
Total PAH (18)	µg/L	1	<1

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 2/6/2023

			QR1
			WATER
PARAMETER	UOM	LOR	SE248520.008
Arsenic	μg/L	1	<1
Cadmium	µg/L	0.1	<0.1
Chromium	μg/L	1	<1
Copper	µg/L	1	<1
Lead	µg/L	1	<1
Nickel	μg/L	1	<1
Zinc	µg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 2/6/2023

			QR1
			WATER
			- 31/5/2023
PARAMETER	UOM	LOR	SE248520.008
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN077	Hydrogen cyanide is liberated from an acidified alkali soil extract by distillation and purging with air. The hydrogen cyanide gas is then collected by passing it through a sodium hydroxide scrubbing solution. The scrubbing solution will then be analysed for cyanide by the appropriate method.
AN287	A buffered distillate or water sample is treated with chloramine/barbituric acid reagents and the intensity of the colour developed is proportional to the cyanide concentration by DA.
AN295	For Soil, a 1:10 NaOH extraction is made and analysed after 16 hours. The soil extract or water sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply. NVL IS I NR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. Raised/lowered Limit of î↓ Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

LIENT DETAILS		LABORATORY DETAI	LS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope St Melrose Park	SGS Reference	SE248520 R0
Order Number	E26047	Date Received	31 May 2023
Samples	3	Date Reported	09 Jun 2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

SE248520 R0

Fibre Identifica	tion in soil				Method AN60	2
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE248520.001	HA4_0.2-0.5	Soil	509g Clay, Sand, Rocks	31 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248520.002	HA1_0.2-0.3	Soil	553g Clay, Sand, Rocks	31 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248520.003	HA2_0.2-0.3	Soil	498g Clay, Sand, Soil, Rocks	31 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 8/6/2023

			HA4_0.2-0.5	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
			31/5/2023	31/5/2023	31/5/2023
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Total Sample Weight*	g	1	509	553	498
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.
			***	-	Indicates that both * and ** apply.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact Client Address	Sergio Raposeira El AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope St Melrose Park	SGS Reference	SE248520 R1
Order Number	E26047	Date Received	31 May 2023
Samples	3	Date Reported	16 Jun 2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

This report cancels and supersedes the report No. SE248520. dated 09/06/2023 issued by SGS Environment, Health and Safety due to amended sample id.

SIGNATORIES -

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

16/06/2023

SE248520 R1

RESULTS Fibre Identification in soil Method AN602						
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE248520.001	HA4_0.2-0.3	Soil	509g Clay, Sand, Rocks	31 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248520.002	HA1_0.2-0.3	Soil	553g Clay, Sand, Rocks	31 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248520.003	HA2_0.2-0.3	Soil	498g Clay, Sand, Soil, Rocks	31 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 8/6/2023

			HA4_0.2-0.3	HA1_0.2-0.3	HA2_0.2-0.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248520.001	SE248520.002	SE248520.003
Total Sample Weight*	g	1	509	553	498
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD

METHOD SUMMARY

METHOD	
METHOD	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES

Amosite

Chrysotile

Crocidolite

-	Brown Asbestos
	- White Asbestos
-	Blue Asbestos

Not Analysed
 Listed, Not Required
 NATA accreditation d
 Indicative data, theor

NATA accreditation does not cover the performance of this service.
Indicative data, theoretical holding time exceeded.
Indicates that both * and ** apply.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

NA

LNR

**

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sqs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

CERTIFICATE OF ANALYSIS 324760-A

Client Details	
Client	El Australia
Attention	Anthony Lo
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E26047, Melrose Park
Number of Samples	additional analysis
Date samples received	02/06/2023
Date completed instructions received	19/06/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	22/06/2023			
Date of Issue	22/06/2023			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Client Reference: E26047, Melrose Park

TRH in Soil (C6-C9) NEPM			
Our Reference		324760-A-1	324760-A-2
Your Reference	UNITS	QT1	QT2
Date Sampled		31/05/2023	31/05/2023
Type of sample		Soil	Soil
Date extracted	-	20/06/2023	20/06/2023
Date analysed	-	21/06/2023	21/06/2023
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
Surrogate aaa-Trifluorotoluene	%	104	101

svTRH (C10-C40) in Soil			
Our Reference		324760-A-1	324760-A-2
Your Reference	UNITS	QT1	QT2
Date Sampled		31/05/2023	31/05/2023
Type of sample		Soil	Soil
Date extracted	-	20/06/2023	20/06/2023
Date analysed	-	20/06/2023	20/06/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C10 -C16	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	90	89

Acid Extractable metals in soil			
Our Reference		324760-A-1	324760-A-2
Your Reference	UNITS	QT1	QT2
Date Sampled		31/05/2023	31/05/2023
Type of sample		Soil	Soil
Date prepared	-	20/06/2023	20/06/2023
Date analysed	-	20/06/2023	20/06/2023
Arsenic	mg/kg	7	7
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	28	21
Copper	mg/kg	18	4
Lead	mg/kg	28	12
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	17	3
Zinc	mg/kg	47	12

Client Reference: E26047, Melrose Park

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

PQL	Method	Blank 20/06/2023 21/06/2023	# [NT]	Base [NT]	Dup. [NT]	RPD	LCS-8 20/06/2023	[TM]
			[NT]					
		21/06/2023	[NT]		INITI	IN ITT	04/00/0000	
					[01]	[NT]	21/06/2023	
25	Org-023	<25	[NT]		[NT]	[NT]	107	
25	Org-023	<25	[NT]		[NT]	[NT]	107	
	Org-023	95	[NT]		[NT]	[NT]	97	
		25 Org-023	25 Org-023 <25	25 Org-023 <25 (NT)	25 Org-023 <25 [NT] [NT]	25 Org-023 <25 [NT] [NT]	25 Org-023 <25 [NT] [NT] [NT]	25 Org-023 <25 INT INT INT INT

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate Spike R			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			20/06/2023	[NT]		[NT]	[NT]	20/06/2023	
Date analysed	-			20/06/2023	[NT]		[NT]	[NT]	20/06/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	106	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	106	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	89	[NT]	[NT]	[NT]	[NT]	97	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/06/2023	[NT]	[NT]		[NT]	20/06/2023	
Date analysed	-			20/06/2023	[NT]	[NT]		[NT]	20/06/2023	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	114	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	107	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	110	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	108	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	112	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	97	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	108	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	107	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS 324761

Client Details	
Client	El Australia
Attention	Sergio Raposeira
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E26047, Melrose Park
Number of Samples	1 Water
Date samples received	02/06/2023
Date completed instructions received	05/06/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	13/06/2023					
Date of Issue	06/06/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

<u>Results Approved By</u> Dragana Tomas, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

BTEX in Water		
Our Reference		324761-1
Your Reference	UNITS	QT1
Date Sampled		31/05/2023
Type of sample		Water
Date extracted	-	05/06/2023
Date analysed	-	06/06/2023
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	101
Surrogate toluene-d8	%	94
Surrogate 4-BFB	%	98

Method ID	Methodology Summary
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTROL: BTEX in Water						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			05/06/2023	[NT]		[NT]	[NT]	05/06/2023	
Date analysed	-			06/06/2023	[NT]		[NT]	[NT]	06/06/2023	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	91	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	102	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98	
Surrogate Dibromofluoromethane	%		Org-023	90	[NT]		[NT]	[NT]	89	
Surrogate toluene-d8	%		Org-023	91	[NT]		[NT]	[NT]	91	
Surrogate 4-BFB	%		Org-023	95	[NT]		[NT]	[NT]	100	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ANALYTICAL REPORT

— CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope Street, Melrose Park	SGS Reference	SE248519 R0
Order Number	E26047	Date Received	31/5/2023
Samples	6	Date Reported	8/6/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Senior Chemist

Kamrul AHSAN Senior Chemist

Acm/m/

Ly Kim HA Organic Section Head

Shane MCDERMOTT

Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

SE248519 R0

VOCs in Water [AN433] Tested: 5/6/2023

			GWBH1M	GWBH2M	GWBH3M	QD1	Trip blank
			WATER -	WATER	WATER	WATER	WATER
							31/5/2023
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003	SE248519.004	SE248519.005
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes Total BTEX	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene (VOC)*	µg/L	5	<0.5	<0.5	<0.5	-	-
Dichlorodifluoromethane (CFC-12)	µg/L	5				-	-
Chloromethane	µg/L	0.3	<5	<5 <0.3	<5	-	-
Vinyl chloride (Chloroethene) Bromomethane	µg/L	10	<10	<10	<10	-	-
Chloroethane	µg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	μg/L μg/L	1	<1	<5	<5	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	<10	-	-
lodomethane	µg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5		
Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	<5		
Allyl chloride	µg/L	2	<2	<2	<2	-	
Carbon disulfide	µg/L	2	<2	<2	<2	-	
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate*	μg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	μg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	µg/L	0.5	58	28	0.6	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-nitropropane	µg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	µg/L	0.5	8.4	2.7	<0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	1.6	0.6	<0.5	-	-
2-hexanone (MBK)	µg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-

SE248519 R0

VOCs in Water [AN433] Tested: 5/6/2023 (continued)

			GWBH1M	GWBH2M	GWBH3M	QD1	Trip blank
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003	SE248519.004	SE248519.005
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	68	31	<10	-	-

SE248519 R0

VOCs in Water [AN433] Tested: 5/6/2023 (continued)

			Trip Spike
			WATER
PARAMETER	UOM	LOR	SE248519.006
Benzene	µg/L	0.5	[98%]
Toluene	µg/L	0.5	[100%]
Ethylbenzene	µg/L	0.5	[97%]
m/p-xylene	µg/L	1	[97%]
o-xylene	µg/L	0.5	[96%]
Total Xylenes	µg/L	1.5	-
Total BTEX	µg/L	3	-
Naphthalene (VOC)*	µg/L	0.5	[95%]
Dichlorodifluoromethane (CFC-12)	µg/L	5	-
Chloromethane	µg/L	5	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-
Bromomethane	µg/L	10	-
Chloroethane	µg/L	5	-
Trichlorofluoromethane	µg/L	1	-
Acetone (2-propanone)	μg/L	10	-
lodomethane	μg/L	5	-
1,1-dichloroethene	µg/L	0.5	-
Acrylonitrile	µg/L	0.5	-
Dichloromethane (Methylene chloride)	μg/L	5	-
Allyl chloride	µg/L	2	-
Carbon disulfide	µg/L	2	-
trans-1,2-dichloroethene	µg/L	0.5	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-
1,1-dichloroethane	µg/L	0.5	-
Vinyl acetate*	μg/L	10	-
MEK (2-butanone)	μg/L	10	-
cis-1,2-dichloroethene	µg/L	0.5	-
Bromochloromethane	μg/L	0.5	-
Chloroform (THM)	µg/L	0.5	-
2,2-dichloropropane	μg/L	0.5	-
1,2-dichloroethane	μg/L	0.5	-
1,1,1-trichloroethane	μg/L	0.5	_
1,1-dichloropropene	μg/L	0.5	_
Carbon tetrachloride	μg/L	0.5	
Dibromomethane	µg/L	0.5	
1,2-dichloropropane	μg/L	0.5	
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	
2-nitropropane	μg/L	100	
Bromodichloromethane (THM)	μg/L	0.5	
MIBK (4-methyl-2-pentanone)			
cis-1,3-dichloropropene	μg/L	5 0.5	-
	μg/L	0.5	-
trans-1,3-dichloropropene	μg/L		-
1,1,2-trichloroethane	µg/L	0.5	
1,3-dichloropropane	μg/L	0.5	-
Dibromochloromethane (THM)	μg/L	0.5	-
2-hexanone (MBK)	µg/L	5	-
1,2-dibromoethane (EDB)	µg/L	0.5	-
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-
Chlorobenzene	µg/L	0.5	-
Bromoform (THM)	μg/L	0.5	-
Styrene (Vinyl benzene)	µg/L	0.5	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-
1,2,3-trichloropropane	µg/L	0.5	-
trans-1,4-dichloro-2-butene	µg/L	1	-
Isopropylbenzene (Cumene)	μg/L	0.5	-

SE248519 R0

VOCs in Water [AN433] Tested: 5/6/2023 (continued)

			Trip Spike
			WATER
PARAMETER	UOM	LOR	SE248519.006
Bromobenzene	μg/L	0.5	-
n-propylbenzene	µg/L	0.5	-
2-chlorotoluene	µg/L	0.5	-
4-chlorotoluene	µg/L	0.5	-
1,3,5-trimethylbenzene	µg/L	0.5	-
tert-butylbenzene	µg/L	0.5	-
1,2,4-trimethylbenzene	µg/L	0.5	-
sec-butylbenzene	μg/L	0.5	-
1,3-dichlorobenzene	μg/L	0.5	-
1,4-dichlorobenzene	µg/L	0.3	-
p-isopropyltoluene	μg/L	0.5	-
1,2-dichlorobenzene	μg/L	0.5	-
n-butylbenzene	μg/L	0.5	-
1,2-dibromo-3-chloropropane	μg/L	0.5	-
1,2,4-trichlorobenzene	μg/L	0.5	-
Hexachlorobutadiene	μg/L	0.5	-
1,2,3-trichlorobenzene	μg/L	0.5	-
Total VOC	µg/L	10	-

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 5/6/2023

			GWBH1M	GWBH2M	GWBH3M	QD1
			WATER	WATER	WATER	WATER
				-		
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003	SE248519.004
TRH C6-C9	µg/L	40	44	<40	<40	43
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403]

16316u. 2/0/2020	$-\mathbf{T}$	est	ed:	2/6	/20	23
------------------	---------------	-----	-----	-----	-----	----

			GWBH1M	GWBH2M	GWBH3M	QD1
			WATER	WATER	WATER	WATER
						-
						31/5/2023
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003	SE248519.004
TRH C10-C14	µg/L	50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	750	<200	<200	<200
TRH C29-C36	µg/L	200	230	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	980	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	1000	<320	<320	<320

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
				-	
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j&k)fluoranthene	μg/L	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	<1	<1

Total Phenolics in Water [AN295] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Total Phenols	mg/L	0.05	<0.05	<0.05	<0.05

pH in water [AN101] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
pH**	pH Units	0.1	6.4	5.9	5.4

Conductivity and TDS by Calculation - Water [AN106] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Conductivity @ 25 C	µS/cm	2	1100	2900	260

Total Dissolved Solids (TDS) in water [AN113] Tested: 5/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Total Dissolved Solids Dried at 175-185°C	mg/L	10	590	1600	220

Turbidity [AN119] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Turbidity	NTU	0.5	24	39	5.3

Total Cyanide in water by Discrete Analyser [AN077/AN287] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Total Cyanide	mg/L	0.004	<0.004	<0.004	<0.004

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
				-	
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Calcium, Ca	mg/L	0.2	23	24	1.1
Magnesium, Mg	mg/L	0.1	39	69	2.5
Total Hardness by Calculation	mg CaCO3/L	1	220	340	13

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M	QD1
			WATER	WATER	WATER	WATER
				-		
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003	SE248519.004
Aluminium	µg/L	5	75	170	69	-
Arsenic	µg/L	1	<1	<1	1	<1
Cadmium	µg/L	0.1	<0.1	0.2	<0.1	0.1
Chromium	µg/L	1	<1	<1	1	<1
Copper	µg/L	1	5	2	<1	5
Lead	µg/L	1	<1	<1	<1	<1
Nickel	µg/L	1	31	64	7	29
Zinc	µg/L	5	99	420	14	93

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 2/6/2023

			GWBH1M	GWBH2M	GWBH3M	QD1
			WATER	WATER	WATER	WATER
						-
						31/5/2023
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003	SE248519.004
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001

ANALYTICAL RESULTS

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples [MA-1523] Tested: 8/6/2023

			GWBH1M	GWBH2M	GWBH3M
			WATER	WATER	WATER
DADIMETER		1.00	31/5/2023	31/5/2023	31/5/2023
PARAMETER	UOM	LOR	SE248519.001	SE248519.002	SE248519.003
Perfluorobutanoic acid (PFBA)	µg/L	0.002	0.011	0.019	<0.002
Perfluoropentanoic acid (PFPeA)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluorohexanoic acid (PFHxA)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluoroheptanoic acid (PFHpA)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluorooctanoic Acid (PFOA)	µg/L	0.001	0.002	0.002	0.002
Perfluorononanoic acid (PFNA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorodecanoic acid (PFDA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluoroundecanoic acid (PFUnA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorododecanoic acid (PFDoA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.004	<0.004	<0.004	<0.004
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorohexadecanoic acid (PFHxDA)	μg/L	0.008	<0.008	<0.008	<0.008
Perfluorobutane sulfonate (PFBS)	μg/L	0.004	<0.004	<0.004	<0.004
Perfluoropentane sulfonate (PFPeS)	μg/L	0.004	<0.004	<0.004	<0.004
Perfluorohexane sulfonate (PFHxS)	μg/L	0.002	0.002	<0.002	0.004
Perfluoroheptane sulfonate (PFHpS)	μg/L	0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonate (PFOS)	μg/L	0.002	<0.002	<0.002	<0.002
Sum of PFHxS and PFOS	μg/L	0.002	0.002	<0.002	0.004
Perfluorononane sulfonate (PFNS)	μg/L	0.002	<0.002	<0.002	<0.002
Perfluorodecane sulfonate (PFDS)	μg/L	0.002	<0.002	<0.002	<0.002
Perfluorododecane sulfonate (PFDoS)	μg/L	0.002	<0.002	<0.002	<0.002
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	μg/L	0.002	<0.002	<0.002	<0.002
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	μg/L	0.002	<0.002	<0.002	<0.002
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluoroctane sulfonamide (PFOSA)	μg/L	0.008	<0.008	<0.008	<0.008
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	μg/L	0.01	<0.01	<0.01	<0.01
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	μg/L	0.01	<0.01	<0.01	<0.01
2-(N-Methylperfluorooctane sulfonamido)-ethanol	μg/L	0.01	<0.01	<0.01	<0.01
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	µg/L	0.01	<0.01	<0.01	<0.01
N-Methylperfluorooctanesulfonamidoacetic acid	µg/L	0.01	<0.01	<0.01	<0.01
N-Ethylperfluorooctanesulfonamidoacetic Acid	µg/L	0.01	<0.01	<0.01	<0.01
Total of PFAS (n=30)	µg/L	0.04	<0.04	<0.04	<0.04

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN077	Hydrogen cyanide is liberated from an acidified sample by distillation and purging with air. The hydrogen cyanide gas is then collected by passing it through a sodium hydroxide scrubbing solution. The scrubbing solution will then be analysed for cyanide by the appropriate method.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN113	The Total Dissolved Solids residue may also be ignited at 550 C and volatile TDS (Organic TDS) and non-volatile TDS (Inorganic) can be determined.
AN119	Turbidity by Nepholometry: Small particles in a light beam scatter light at a range of angles. A turbidimeter measures this scatter and reports results compared to turbidity standards, in NTU. This procedure is not suitable for very dark coloured liquids or samples with high solids because light absorption causes artificially low light scatter and low turbidity. Reference APHA 2130B.
AN287	A buffered distillate or water sample is treated with chloramine/barbituric acid reagents and the intensity of the colour developed is proportional to the cyanide concentration by DA.
AN295	The water sample or extract of sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate (III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
MA-1523	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	î↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Appendix I – QA/QC Assessment

I.1 Quality Assurance / Quality Control Program

Quality assurance comprises an assessment of the reliability of the field procedures and laboratory results against standard industry practices and the SAQP. A summary of the project QA/QC measures incorporated into this DSI is presented in **Table I-1**.

Task	Description	Project
Field QA/QC		
General	Work was to be undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were collected directly from the augers and excavator bucket. Soil samples were placed in 250 gram glass jars, which were filled to minimise headspace, and sealed using Teflon-coated lids. Groundwater samples were obtained using sample bottles/vials provided by the laboratory.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes
Equipment Decontamination	Sampling equipment to be decontaminated after the collection of each soil sample by washing with phosphate-free detergent (such as Decon 90 or Alconox) and potable water, followed by a final distilled water rinse. One rinsate blank would be collected and analysed for the primary contaminants. All results should be non-detect.	Yes One rinsate samples were collected in total. One was collected during the soil investigation on 31 March 2023. All results were reported as below the detection limits. With an exception of pH, field measurement faulty due to equipment.
Transport	Samples were stored in a chilled (with ice) cooler box and transported to the laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation and transport duration.	Yes
Trip Blanks	Trip Blank (TB) samples were to be prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.	Three trip blank samples prepared by the primary laboratory were analysed for BTEX during soil and groundwater testing. The results were reported below the laboratory LOR, indicating that sample transport acceptable.
Trip Spikes	Trip spike (TS) samples were to be submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.	Three trip spike samples were submitted to the primary laboratory for BTEX analysis, the results of which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

Table I-1Project QC Measures

Task	Description	Project	
Duplicates	 Field duplicate samples were analysed as follows: intra-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM); and inter-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM). Field and laboratory acceptable limits between 30-50% RPD as stated by AS4482.1–2005. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered. Non-compliance is to be documented in the report and the sample re-analysed or a higher level conservatively adopted. 	The required sampling density of 1 per 20 duplicated primary samples was achieved and sufficient for the investigation. Laboratory duplicates prepared and analysed. Minor non-conformance, with negligible effects on data use for interpretative purposes. Field QC samples are presented in Table 1-2 and calculated RPD values are presented in Table 3.1 and Table 3.2 . RPDs were within th acceptable ranges, except for: <u>Soil:</u> QD2: Nickel – RPD=51.16% QT1: Nickel – RPD=80% QT1: Nickel – RPD=80% QT2: Chromium – RPD=70.97% QT2: Copper – RPD=62.30% QT2: Nickel – RPD=60.87% Exceedances of the RPD range limit for soil duplicates were likely to be due to the heterogeneous nature of the fill material.	
Laboratory QA/Q)C	Appendix H.	
Laboratory Analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs.	Yes SGS - primary laboratory Envirolab - secondary laboratory Laboratory QA/QC analyses are included in Appendix J.	
	Appropriate detection limits were used for the analyses to be undertaken.	Practical Quantitation Limits for all tested parameters during the DSI are presented in laboratory analytical reports in Appendix H.	
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	All samples were analysed within the holding times with an exception of extracted date for: <u>pH</u> SE248519.001LB281217 GWBH1M; SE248519.002 LB281217 GWBH2M; and SE248519.003 LB281217 GWBH3M. <u>Turbidity</u> SE248519.001LB281242 GWBH1M; SE248519.002 LB281242 GWBH2M; and SE248519.003 LB281242 GWBH3M.	

Task	Description	Project	
Method Blanks	The method blank sample is laboratory prepared, containing the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criterion aims to find no detectable contamination in the reagents. Each analysis procedure should be subject to a method blank analysis. The results of each should indicate that contaminants were not detected.	All method blanks were within acceptable ranges.	
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub-samples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra- laboratory duplicates should be performed at a frequency of 1 per 10 samples.	 Laboratory duplicates for soil and groundwater samples were generally within the acceptance criteria, except for the follow: Soil: SE248500.002 (duplicate LB281392.014), Total PAH (18) (RPD=62%). The RPD failed the acceptance criteria due to sample heterogeneity. SE248200.023 (duplicate LB280870.023), Zinc (RPD=60%). The RPD failed the acceptance criteria due to sample heterogeneity. SE248596.004 (duplicate LB281443.024), d8-toluene (Surrogate) (RPD=53%). At least 2 of 3 surrogates are within acceptance criteria 	
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	All laboratory control standards were within acceptable ranges.	
Matrix Spikes	Matric spikes are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	All of matrix data were within acceptable ranges.	

Task	Description	Project
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Assessment of surrogate spikes has been undertaken by the laboratory. Recovery were within the acceptable range.
Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	Assessment of the investigation QA/QC is presented in the following sections.

I.2 Calculation of Relative Percentage Difference

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

I.3 Field QA/QC

The field (intra- / inter- laboratory) duplicate samples collected during the works are summarised in **Table I-2**. Inter-lab duplicates were analysed by the secondary laboratory, Envirolab.

Table I-2 Field QC Sampling Progra	Table I-2	Field	QC	Sampling	Program
------------------------------------	-----------	-------	----	----------	---------

Matrix	Primary QA Sample	Duplicate (Primary Lab)	Triplicate (Secondary Lab)	Total Duplicates
Soil	HA2_0.2-0.3	QD1	QT1	4
	HA1_0.2-0.3	QD2	QT2	
Groundwater	BH1M	QD1	QT1	2

I.4 Field Data Quality Indicators

A discussion of the field data quality indicators is presented in Table I-3 below.

DQI	Item	Conformance
Precision Measure of the variability (or reproducibility) of data.	Standard field procedures appropriate and complied with	Yes
Accuracy Quantitative measure of the	Standard field procedures appropriate and complied with	Yes
closeness of reported data to the true values.	Calibration of instruments against known standards	Yes
Representativeness	Appropriate media sampled according to SAQP	Yes
Confidence the data are representative of each media present on the site.	Each media identified in SAQP sampled	Yes
Completeness	Each critical location sampled	Yes
Percentage of useable data from sampling episode (set).	SAQP appropriate and complied with	Part (Due to inaccessibility to the western portion of the site)
	Appropriate number of field duplicate samples taken	Yes
	Experienced sampler	Yes
	Field documentation correct	Yes
Comparability Confidence [expressed	Same sampling method used on each occasion/location	Yes
qualitatively] that data may be considered to be equivalent for	Experienced sampler	Yes
each sampling and analytical event.	Same type of samples collected (filtered, size, fractions)	Yes

I.5 Conclusion for the Field QA/QC

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP and SOPs, which were devised with reference to industry-approved guidelines. With an exception of pH, field measurement faulty due to equipment. Appropriate QC measures were integrated into each sampling event and the DQI were met, or if not, the minor non-conformances had negligible effects on the data use for interpretative purposes.

All samples, including field QC samples, were transported to the primary and secondary laboratories under chilled conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. Copies of these were included in **Appendix G**. El considered the field QA/QC program carried out during the DSI to be appropriate.

I.6 Laboratory QA/QC

Primary and intra-laboratory duplicate samples were analysed by SGS (located in Alexandria NSW), with inter-laboratory duplicate samples analysed by Envirolab (located in Chatswood NSW). All laboratories are accredited by NATA for the analyses undertaken. A discussion of the laboratory DQIs is presented below.

Table I-4	Laboratory	Data	Quality	Indicators
-----------	------------	------	---------	------------

DQI	Item	Conformance
Completeness	All critical samples analysed according to SAQP and proposal	Yes
A measure of the amount of useable data (expressed	All analytes analysed according to SAQP in proposal	Yes
as %) from a data collection activity	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
Comparability	Sample analytical methods used (including clean-up)	Yes
The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Sample PQLs (justify/ quantify if different)	Yes
	Same laboratories (justify/ quantify if different)	Yes
	Same units (justify/ quantify if different)	Yes
Representativeness Confidence that data are representative of each media	All key samples analysed according to SAQP in the proposal	Yes
Precision	Analysis of laboratory duplicates	Yes
A quantitative measure of the variability (or	Analysis of field duplicates	Yes
reproducibility) of data	Analysis of laboratory-prepared volatile trip spikes	Yes
Accuracy	Analysis of field blanks	Yes
A quantitative measure of the closeness of reported	Analysis of rinsate/ rinsate blanks	Yes
data to the true value	Analysis of method blanks	Yes
	Analysis of matrix spikes (MS)	Yes
	Analysis of surrogate spikes	Yes
	Analysis of laboratory control samples	Yes

I.7 Conclusions for the Laboratory QA/QC

All contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQI were met, or if not, the variability was suitably justified. All final reports were submitted in full and included all requested analyses, as per the signed COC forms. El considered the laboratory QA/QC programs carried out during the DSI to be appropriate.

I.8 Summary of Project QA/QC

The project DQOs specified in **Section 5**, **Table 5-1** were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the DSI were accurate, precise and representative of the (final) site conditions. It was therefore considered that the data were reliable and that the results could be used for DSI interpretative purposes.

Appendix J – Laboratory DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	El AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope St Melrose Park	SGS Reference	SE248520 R0
Order Number	E26047	Date Received	31 May 2023
Samples	8	Date Reported	09 Jun 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

1 item

Sample counts by matrix 7 Soil, 1 Water		Type of do	Type of documentation received		COC		
Date documentation received	d	1/6/2023@3:07pm Samp		Samples received in good order		Yes	
Samples received without he	eadspace	Yes	Sample ter	nperature upon receipt		17.2°C	
Sample container provider		SGS	Turnaroun	d time requested		Standard	
Samples received in correct	containers	Yes			Yes Yes		
Sample cooling method		Ice Bricks					
Complete documentation rec	ceived	Yes	•				
SGS Australia Pty Ltd	Environment, Health and	Unit 16 33 M	addox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

f +61 2 8594 0499

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method: ME-(AU)	-[ENV]AS4964/AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281962	31 May 2023	31 May 2023	30 May 2024	08 Jun 2023	30 May 2024	09 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281962	31 May 2023	31 May 2023	30 May 2024	08 Jun 2023	30 May 2024	09 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281962	31 May 2023	31 May 2023	30 May 2024	08 Jun 2023	30 May 2024	09 Jun 2023
avimetric Determination	of Asbestos in Soil						Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281962	31 May 2023	31 May 2023	27 Nov 2023	08 Jun 2023	27 Nov 2023	09 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281962	31 May 2023	31 May 2023	27 Nov 2023	08 Jun 2023	27 Nov 2023	09 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281962	31 May 2023	31 May 2023	27 Nov 2023	08 Jun 2023	27 Nov 2023	09 Jun 2023
lercury (dissolved) in Wat	ter						Method: ME-(AU)-[ENV	AN311(Perth)/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248520.008	LB281263	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	02 Jun 2023
lercury in Soil							Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
QD1	SE248520.004	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
QD2	SE248520.005	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
oisture Content							Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
1A4_0.2-0.5	SE248520.001	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
IA1_0.2-0.3	SE248520.002	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
QD1	SE248520.004	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
QD2	SE248520.005	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
Frip Blank	SE248520.006	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
C Pesticides in Soil							Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
IA4_0.2-0.5	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
QD2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
P Pesticides in Soil							Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
AH (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
AH (Polynuclear Aromati	c Hydrocarbons) in Water							ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	SE248520.008							

PCBs in Soil

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA1_0.2-0.3	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
QD1	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
2D2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
		ED201332	51 Way 2025	51 Way 2025	14 3011 2023	02 301 2023		
otal Cyanide in soil by Dis	screte Analyser						Method: ME-(AU)-[ENV]AN077/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281641	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281641	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281641	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023
otal Phenolics in Soil							Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281632	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	06 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281632	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	06 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281632	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	06 Jun 2023
				,			Method: ME-(AU	
	ts in Soil/Waste Solids/Ma	-		_				
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
QD1	SE248520.004	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
QD2	SE248520.005	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
race Metals (Dissolved) ir	n Water by ICPMS						Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248520.008	LB281319	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	05 Jun 2023
RH (Total Recoverable H	ydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]A
Comple Name	Somple No	OC Bof	Sampled	Boooiyod	Extraction Duo	Extracted		
	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	Analysis Due 12 Jul 2023	Analysed 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3	SE248520.001 SE248520.002	LB281392 LB281392	31 May 2023 31 May 2023	31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3	SE248520.001 SE248520.002 SE248520.003	LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1	SE248520.001 SE248520.002 SE248520.003 SE248520.004	LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]A
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No.	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed
Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 'OC's in Soil	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No.	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No.	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A ME-(AU)-[ENV]A
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 OC's in Soll Sample Name	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023	14 Jun 2023 07 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed ME-(AU)-[ENV]A
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 OC's in Soil Sample Name HA4_0.2-0.5	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received	14 Jun 2023 07 Jun 2023 Extraction Due 07 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]/ Analysed 08 Jun 2023 WE-(AU)-[ENV]/ Analysed 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023	14 Jun 2023 07 Jun 2023 Extraction Due 07 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]/ Analysed 08 Jun 2023 WE-(AU)-[ENV]/ Analysed 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 DD2 RH (Total Recoverable H Sample Name QR1 OC's In Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.001 SE248520.002	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393	31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 WE-(AU)-[ENV]/ Analysed 08 Jun 2022 WE-(AU)-[ENV]/ Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Stepse No. SE248520.001 SE248520.002 SE248520.003	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 08 Jun 2023 ME-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Stepselen No. SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 VIE-(AU)-[ENV]/4 Analysed 08 Jun 2023 07 J
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Frip Blank	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Stepson State Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.004 SE248520.004	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 VIE-(AU)-[ENV]/ Analysed 08 Jun 2023 07 Ju
HA4_0.2-0.5 HA1_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H) Sample Name QR1 OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.5 HA1_0.2-0.3 QD1 QD2 Image: Color Co	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 SE248520.008 SE248520.001 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 VIE-(AU)-[ENV]/4 Analysed 08 Jun 2023 07 J
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 'OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 QD1 QD2 Trip Blank Trip Spike 'OC's In Water	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 SE248520.000 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 Extraction Due 07 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 202 14 Jun 202 14 Jun 202 14 Jun 202	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023
HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 'OC's in Soil Sample Name HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Bank Trip Spike	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 SE248520.008 SE248520.001 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 08 Jun 2023 07 Jun 2023

· · · · · · · · · · · · · · · · · · ·								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.5	SE248520.001	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soli (continued) Method: ME-(AU)-[EN								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QD1	SE248520.004	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023
QD2	SE248520.005	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023
Trip Blank	SE248520.006	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023
Trip Spike	SE248520.007	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023
Volatile Petroleum Hydrod	carbons in Water						Method:	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248520.008	LB281645	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soli				Method: MI	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	HA4_0.2-0.5	SE248520.001	%	60 - 130%	87
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	79
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	82
P Pesticides in Soil				Method: MI	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
	HA4_0.2-0.5	SE248520.001	%	60 - 130%	88
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	89
	HA2 0.2-0.3	SE248520.003	%	60 - 130%	88
d14-p-terphenyl (Surrogate)	HA4 0.2-0.5	SE248520.001	%	60 - 130%	95
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	97
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	96
ALI (Debraueleer Aremetic Hudroserbene) in Seil			70		
					E-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	HA4_0.2-0.5	SE248520.001	%	70 - 130%	88
	HA1_0.2-0.3	SE248520.002	%	70 - 130%	89
	HA2_0.2-0.3	SE248520.003	%	70 - 130%	88
d14-p-terphenyl (Surrogate)	HA4_0.2-0.5	SE248520.001	%	70 - 130%	95
	HA1_0.2-0.3	SE248520.002	%	70 - 130%	97
nitrobenzene (Surrogate)	HA2_0.2-0.3	SE248520.003	%	70 - 130%	96
d5-nitrobenzene (Surrogate)	HA4_0.2-0.5	SE248520.001	%	70 - 130%	97
	HA1_0.2-0.3	SE248520.002	%	70 - 130%	98
	HA2_0.2-0.3	SE248520.003	%	70 - 130%	96
AH (Polynuclear Aromatic Hydrocarbons) in Water				Method: MI	E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
	QR1	SE248520.008	%	40 - 130%	63
	QR1	SE248520.008	%	40 - 130%	79
	QR1	SE248520.008	%	40 - 130%	59
	QKI	3E246320.006	/6		
CBs in Soil					E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
TCMX (Surrogate)	HA4_0.2-0.5	SE248520.001	%	60 - 130%	83
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	75
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	78
OC's in Soil				Method: MI	E-(AU)-[ENV]AI
					Recovery
arameter	Sample Name	Sample Number	Units	Criteria	IVECOVELA
	Sample Name HA4_0,2-0,5	Sample Number SE248520.001			
	HA4_0.2-0.5	SE248520.001	%	60 - 130%	78
	HA4_0.2-0.5 HA1_0.2-0.3	SE248520.001 SE248520.002	%	60 - 130% 60 - 130%	78 73
achloro-m-xylene (TCMX) (Surrogate) eeticides in Soil anteter orobiphenyl (Surrogate) (Polynuclear Aromatic Hydrocarbons) in Soll anteter orobiphenyl (Surrogate) -p-terphenyl (Surrogate) (Polynuclear Aromatic Hydrocarbons) in Water anteter (Surrogate) (Polynuclear Aromatic Hydrocarbons) in Water anteter (Surrogate) (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll anteter (s in Soll a	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3	SE248520.001 SE248520.002 SE248520.003	% %	60 - 130% 60 - 130% 60 - 130%	78 73 77
	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1	SE248520.001 SE248520.002 SE248520.003 SE248520.004	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92
	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89
	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89 95
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89 95 92
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89 95 92 82
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002	% % % % % %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 82 75
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.002 SE248520.003	% % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	% % % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.004 SE248520.005 SE248520.005 SE248520.006	% % % % % % % % %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 76 82 81 81
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA4_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Blank Trip Blank Trip Blank Trip Blank Trip Spike	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.005 SE248520.005 SE248520.006 SE248520.006 SE248520.007	% % % % % % % % %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 82 75 75 76 82 81 81 87 86
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 QD1 QD2 Trip Blank Trip Blank Trip Spike HA4_0.2-0.5	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.007	% % % % % % % % % % % % % % % % % % %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 87 82 81 87 86 71
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.002 SE248520.003 SE248520.004 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.007 SE248520.001 SE248520.001 SE248520.001 SE248520.001	% % % % % % % % % % % % % % % % % % %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 81 87 86 71 72
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 HA4_0.2-0.5 HA4_0.2-0.5 HA4_0.2-0.5 HA4_0.2-0.5	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.004 SE248520.005 SE248520.005 SE248520.007 SE248520.007 SE248520.007 SE248520.001 SE248520.001 SE248520.002 SE248520.001 SE248520.002	% %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 81 87 86 71 72 68
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.5 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 HA4_0.2-0.5 HA1_0.2-0.3 QD2 Trip Spike HA4_0.2-0.5 HA1_0.2-0.3 QD2 QD1 QD2-0.3 QD2 QD1 QD2 QD1 QD3 QD4	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004 SE248520.005 SE248520.005 SE248520.006 SE248520.007 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004	% %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 87 86 71 72 86 84
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2.0.5 HA1_0.2.0.3 HA2_0.2.0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Blank Trip Diank Trip Blank Trip Blank Trip Blank HA4_0.2.0.5 HA1_0.2.0.3 HA2_0.2.0.5 HA1_0.2.0.3 QD2 QD1 QD2 QD2 Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.006 SE248520.007 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.003 SE248520.004 SE248520.005	% %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 87 86 71 71 72 68 84 84
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2.0.5 HA1_0.2.0.3 HA2_0.2.0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Spike HA2_0.2.0.3 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Spike	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.004 SE248520.005 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.003 SE248520.004 SE248520.005 SE248520.005 SE248520.005 SE248520.005 SE248520.005 SE248520.005	% %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 87 86 71 71 72 68 84 84 88
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	HA4_0.2.0.5 HA1_0.2.0.3 HA2_0.2.0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Blank Trip Diank Trip Blank Trip Blank Trip Blank HA4_0.2.0.5 HA1_0.2.0.3 HA2_0.2.0.5 HA1_0.2.0.3 QD2 QD1 QD2 QD2 Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 QD2	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.006 SE248520.007 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.003 SE248520.004 SE248520.005	% %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 87 86 71 72 68 84 84
d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	HA4_0.2.0.5 HA1_0.2.0.3 HA2_0.2.0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Spike HA2_0.2.0.3 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2.0.5 HA1_0.2.0.3 QD1 QD2 Trip Spike	SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.004 SE248520.005 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.003 SE248520.004 SE248520.005 SE248520.005 SE248520.005 SE248520.005 SE248520.005 SE248520.005	% %	60 - 130% 60 - 130%	78 73 77 92 89 95 92 82 75 76 82 81 87 86 71 72 68 84 84 82 89

9/6/2023

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OCs in Water (continued)				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE248520.008	%	40 - 130%	107
d4-1,2-dichloroethane (Surrogate)	QR1	SE248520.008	%	40 - 130%	106
d8-toluene (Surrogate)	QR1	SE248520.008	%	40 - 130%	98
olatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	HA4_0.2-0.5	SE248520.001	%	60 - 130%	78
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	73
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	77
	QD1	SE248520.004	%	60 - 130%	92
	QD2	SE248520.005	%	60 - 130%	89
d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.5	SE248520.001	%	60 - 130%	82
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	75
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	76
	QD1	SE248520.004	%	60 - 130%	82
	QD2	SE248520.005	%	60 - 130%	81
d8-toluene (Surrogate)	HA4_0.2-0.5	SE248520.001	%	60 - 130%	71
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	72
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	68
	QD1	SE248520.004	%	60 - 130%	84
	QD2	SE248520.005	%	60 - 130%	82
olatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE248520.008	%	40 - 130%	107
d4-1,2-dichloroethane (Surrogate)	QR1	SE248520.008	%	60 - 130%	106
d8-toluene (Surrogate)	QR1	SE248520.008	%	40 - 130%	98

SE248520 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB281263.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil				Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB281397.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Metho	od: ME-(AU)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result
LB281392.001		Alpha BHC	mg/kg	0.1	<0.1
		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Lindane (gamma BHC)	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1	
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		Endrin aldehyde	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endrin ketone	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	_	87
OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result
LB281392.001		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2

Sample Number	Parameter	Units	LOR	Result
LB281392.001	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	95
	d14-p-terphenyl (Surrogate)	%	-	103
AH (Polynuclear Aromatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result
B281392.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1

Acenaphthene

Phenanthrene

Anthracene

Fluorene

<0.1

<0.1

< 0.1

<0.1

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.1

0.1

SE248520 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)			Meth	nod: ME-(AU)-[ENV]AN420	
Sample Number		Parameter	Units	LOR	Result
LB281392.001		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
Surro	ogates	d5-nitrobenzene (Surrogate)	%	-	97
		2-fluorobiphenyl (Surrogate)	%	-	95
		d14-p-terphenyl (Surrogate)	%	-	103

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Parameter	Units	LOR	Result
Naphthalene	μg/L	0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1
Acenaphthene	μg/L	0.1	<0.1
Fluorene	μg/L	0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1
Anthracene	μg/L	0.1	<0.1
Fluoranthene	μg/L	0.1	<0.1
Pyrene	μg/L	0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.1
Chrysene	μg/L	0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1
d5-nitrobenzene (Surrogate)	%	-	50
2-fluorobiphenyl (Surrogate)	%	-	54
d14-p-terphenyl (Surrogate)	%	-	74
	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	ParameterUnitsNaphthaleneµg/L2-methylnaphthaleneµg/L1-methylnaphthaleneµg/LAcenaphthyleneµg/LAcenaphtheneµg/LFluoreneµg/LPhenanthreneµg/LPhenanthreneµg/LFluoreneµg/LPreneµg/LBenzo(a)anthraceneµg/LBenzo(a)pyreneµg/LIndeno(1,2,3-cd)pyreneµg/LBenzo(ah)anthraceneµg/LBenzo(ah)ant	Parameter Units LOR Naphthalene µg/L 0.1 2-methylnaphthalene µg/L 0.1 1-methylnaphthalene µg/L 0.1 Acenaphthylene µg/L 0.1 Acenaphthylene µg/L 0.1 Acenaphthene µg/L 0.1 Fluorene µg/L 0.1 Phenanthrene µg/L 0.1 Phenanthrene µg/L 0.1 Prene µg/L 0.1 Benzo(a)anthracene µg/L 0.1 Benzo(a)anthracene µg/L 0.1 Benzo(a)pyrene µg/L 0.1 Indeno(1,2,3-cd)pyrene µg/L 0.1 Benzo(a)h)anthracene µg/L 0.1 Benzo(gh)perylene µg/L 0.1 Benzo(gh)perylene

Method: ME-(AU)-[ENV]AN420 PCBs in Soil Sample Numb Units LOR Result Parameter LB281392 001 Arochlor 1016 mg/kg 02 <0.2 Arochlor 1221 mg/kg 0.2 <0.2 Arochlor 1232 0.2 <0.2 mg/kg Arochlor 1242 mg/kg 0.2 <0.2 Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 0.2 <0.2 mg/kg Arochlor 1260 mg/kg 0.2 < 0.2 Arochlor 1262 mg/kg 0.2 <0.2 <0.2 Arochlor 1268 0.2 mg/kg Total PCBs (Arochlors) mg/kg 1 <1 Surrogates TCMX (Surrogate) % 87 -Total Cyanide in soil by Discrete Analyser Method: ME-(AU)-[ENV]AN077/AN287 Sample Number Parameter Units LOR Result LB281641.001 Total Cyanide mg/kg 0.5 <0.5

Total Phenolics in Soil

Total Phenolics in Soil			Meth	od: ME-(AU)-[ENV]AN295
Sample Number	Parameter	Units	LOR	Result
LB281632.001	Total Phenols	mg/kg	0.5	<0.5

Total Recoverable Elements in Soil/Waste Solids/Material	s by ICPOES		Method: ME-(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR

SE248520 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	ments in Soil/Waste Solids/Mate	rials by ICPOES (continued)		Method: M	E-(AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
LB281395.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu		0.5	<0.5
			mg/kg		
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
race Metals (Dissolve	ed) in Water by ICPMS			Me	hod: ME-(AU)-[ENV]AN
Sample Number	· ·	Parameter	Units	LOR	Result
.B281319.001		Arsenic	μg/L	1	<1
.0201319.001					
		Cadmium	μg/L	0.1	<0.1
		Chromium	μg/L	1	<1
		Copper	μg/L	1	<1
		Lead	μg/L	1	<1
		Nickel	µg/L	1	<1
		Zinc	μg/L	5	<5
		LIIC	μg/L		
	ble Hydrocarbons) in Soll				hod: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
B281392.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40		100	<100
			mg/kg		
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverab	le Hydrocarbons) in Water			Me	hod: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B281260.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
/OC's in Soil				Met	hod: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B281393.001	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1
.0201333.001	Tunigants			0.1	<0.1
		1,2-dichloropropane	mg/kg		
		cis-1,3-dichloropropene	mg/kg	0.1	<0.1
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
		Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		1,1-dichloroethene	mg/kg	0.1	<0.1
		lodomethane	mg/kg	5	<5
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
		Allyl chloride	mg/kg	0.1	<0.1
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane	mg/kg	0.1	<0.1
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane		0.1	<0.1
			mg/kg		
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
		Dibromomethane			
					<0,1
		Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane	mg/kg mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	

SE248520 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

ple Number		Parameter	Units	LOR	Result
1393.001	Halogenated Aliphatics	1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
1020100001	Talogenated Alphatics	1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene		0.1	<0.1
	Talogenated Aromatics	Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
			mg/kg		
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		o-xylene	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate*	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	87
		d8-toluene (Surrogate)	%	-	81
		Bromofluorobenzene (Surrogate)	%	-	94
	Totals	Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total BTEX*	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform (THM)	mg/kg	0.1	<0.1
		Bromodichloromethane (THM)	mg/kg	0.1	<0.1
		Dibromochloromethane (THM)	mg/kg	0.1	<0.1
		Bromoform (THM)	mg/kg	0.1	<0.1
			~ ~		

Sample Number Units Parameter LOR Result LB281645.001 Monocyclic Aromatic Benzene µg/L 0.5 <0.5 Hydrocarbons Toluene 0.5 <0.5 µg/L Ethylbenzene 0.5 < 0.5 µg/L m/p-xylene µg/L 1 <1 0.5 <0.5 o-xylene µg/L Polycyclic VOCs Naphthalene (VOC)* 0.5 < 0.5 µg/L Surrogates d4-1,2-dichloroethane (Surrogate) % 102 d8-toluene (Surrogate) % -96 Bromofluorobenzene (Surrogate) % 105

SE248520 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB281393.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1.2-dichloroethane (Surrogate)	%	-	87

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hyd	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB281645.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	102
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	105

DUPLICATES

Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Method: ME-(AU)-[ENV]AN311(Perth)/AN312 Mercury (dissolved) in Water Original Duplicate LOR Original Duplicate Criteria % RPD % Parameter Units SE248519.002 LB281263.014 <0.0001 0.0001 < 0.0001 200 195 Mercury µg/L SE248520.008 LB281263.018 Mercury µg/L 0.0001 < 0.0001 < 0.0001 200 0

Mercurv in Soil

Mercury in Soil Method: ME-(AU)-[ENV						ENVJAN312		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281397.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281394.011	% Moisture	%w/w	1	9.3	8.5	41	9
SE248520.005	LB281394.022	% Moisture	%w/w	1	9.1	7.4	42	20
SE248520.006	LB281394.024	% Moisture	%w/w	1	<1.0	<1.0	200	0

OC Peeticides in Soil

OC Pesticides in S	oil						Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.12	30	1
SE248520.003	LB281392.025		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

OC Pesticides in S	ioil (continued)						Met	nod: ME-(AU)-	(ENV]AN420
Original	Duplicate		Parameter	Un	its LOI	R Original	Duplicate	Criteria %	RPD %
SE248520.003	LB281392.025		p,p'-DDE	mg	'kg 0.1	<0.1	<0.1	200	0
			Dieldrin	mg	'kg 0.2	<0.2	<0.2	200	0
			Endrin	mg	'kg 0.2	<0.2	<0.2	200	0
			Beta Endosulfan	mg	'kg 0.2	<0.2	<0.2	200	0
			o,p'-DDD*	mg	'kg 0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg	'kg 0.1	<0.1	<0.1	200	0
			Endrin aldehyde	mg	'kg 0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg	'kg 0.1	<0.1	<0.1	200	0
			o,p'-DDT*	mg	'kg 0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg	'kg 0.1	<0.1	<0.1	200	0
			Endrin ketone	mg	'kg 0.1	<0.1	<0.1	200	0
			Methoxychlor	mg	'kg 0.1	<0.1	<0.1	200	0
			Mirex	mg	'kg 0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg	'kg 0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg	'kg 1	<1	<1	200	0
			Total OC VIC EPA	mg	'kg 1	<1	<1	200	0
	Su	urrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg	'kg -	0.12	0.13	30	4

OP Pesticides in S	oil						Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
SE248520.003	LB281392.025		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
		Phenanthrene	mg/kg	0.1	<0.1	0.1	150	1
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	0.1	0.2	103	37
		Pyrene	mg/kg	0.1	0.1	0.2	102	36
		Benzo(a)anthracene	ma/ka	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN420

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
02240000.002	LB201002.014		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	185	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	198	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	167	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor*<>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	61	62 @
		Surrogates	d5-nitrobenzene (Surrogate)		- 0.0	0.5	0.5	30	1
		Surroyates		mg/kg			0.3	30	1
			2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.4	30	1
SE248520.003	LB281392.025			mg/kg			<0.1	185	0
5E240520.005	LD201392.025		Naphthalene 2-methylnaphthalene	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene		0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg					
			Phenanthrene	mg/kg	0.1	0.1	<0.1	135	9
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	9
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
CBs in Soil							Met	nod: ME-(AU)-	(ENV)A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE248520.003	LB281392.025		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochior 1254 Arochior 1260	mg/kg	0.2	<0.2	0	200	0
			Arochior 1260 Arochior 1262	mg/kg	0.2	<0.2	0	200	0
			Arochior 1262 Arochior 1268		0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg mg/kg	1	<0.2	0	200	0
			LOIAL PLADS (AFOCDIOTS)	ma/ka	1	<1		200	

Total Cyanide in soil by Discrete Analyser Method: ME-(AU)-[E							1077/AN287
Original	Duplicate	Parameter	Units LOR	Original	Duplicate	Criteria %	RPD %
SE248544.002	LB281641.017	Total Cyanide	mg/kg 0.5	24	20	32	19

Method: ME-(AU)-[ENV]AN295

Page 14 of 26

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Total Phenolics in S	oil (continued)					Meth	od: ME-(AU)-[ENVJAN295
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248436.002	LB281632.007	Total Phenols	mg/kg	0.5	<0.5	<0.5	200	0

	Elements in Soil/Was	ste Solids/Materials	by ICPOES				Method: ME	-(AU)-[ENV]A	N040/AN3
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281395.014		Arsenic, As	mg/kg	1	9	9	42	3
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	12	12	34	3
			Copper, Cu	mg/kg	0.5	17	16	33	7
			Nickel, Ni	mg/kg	0.5	3.5	3.6	44	2
			Lead, Pb	mg/kg	1	13	13	38	2
			Zinc, Zn	mg/kg	2	19	18	41	5
race Metals (Disa	solved) in Water by IC	PMS					Meth	od: ME-(AU)-	(ENVJAN3
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.003	LB281319.014		Arsenic	μg/L	1	1	1	87	0
			Cadmium	μg/L	0.1	<0.1	<0.1	200	0
			Chromium	μg/L	1	1	1	101	3
			Copper	μg/L	1	<1	<1	169	0
			Lead	μg/L	1	<1	<1	200	0
			Nickel	μg/L	1	7	7	28	0
			Zinc	μg/L	5	. 14	. 14	51	2
SE248562.001	LB281319.018		Arsenic	μg/L	1	<1	<1	165	0
02240302.001	ED201313.010		Cadmium	μg/L	0.1	<0.1	<0.1	200	0
			Chromium		1	1	1	100	2
				μg/L	1	2	2	81	2
			Copper	μg/L					
			Lead	μg/L	1	<1	<1	200	0
			Nickel	μg/L	1	1	1	84	0
			Zinc	μg/L	5	<5	<5	200	0
	erable Hydrocarbons)	in Soli	Devenuedor	linite		Original		od: ME-(AU)-	
Original	Duplicate LB281392.014		Parameter	Units	LOR	Original		Criteria %	RPD %
SE248500.002	LB281392.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	135	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)						
				mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	25 90	<25 <90	<90	200	0
			TRH >C16-C34 (F3) TRH >C34-C40 (F4)						
SE248520.003	LB281392.025			mg/kg	90	<90	<90	200	0
SE248520.003	LB281392.025		TRH >C34-C40 (F4)	mg/kg mg/kg	90 120	<90 <120	<90 <120	200 200	0
SE248520.003	LB281392.025		TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg	90 120 20	<90 <120 <20	<90 <120 <20	200 200 200	0 0 0
SE248520.003	LB281392.025		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg	90 120 20 45	<90 <120 <20 <45	<90 <120 <20 <45	200 200 200 200	0 0 0 0
SE248520.003	LB281392.025		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45	<90 <120 <20 <45 <45	<90 <120 <20 <45 <45	200 200 200 200 200 200	0 0 0 0 0
SE248520.003	LB281392.025		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100	<90 <120 <20 <45 <45 <100	<90 <120 <20 <45 <45 <100	200 200 200 200 200 200 200	0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110	<90 <120 <20 <45 <45 <100 <110	<90 <120 <20 <45 <45 <100 <110	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110 210	<90 <120 <20 <45 <45 <100 <110 <210	<90 <120 <20 <45 <45 <100 <110 <210	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110 210 25	<90 <120 <20 <45 <45 <100 <110 <210 <25	<90 <120 <20 <45 <100 <110 <210 <25	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110 210 25 25	<90 <120 <20 <45 <100 <110 <210 <25 <25	<90 <120 <20 <45 <100 <110 <210 <25 <25 <25	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0
	LB281392.025		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110 210 25 25 90	<90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90	<pre><90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov			TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110 210 25 25 90	<90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90	<90 <120 <20 <45 <100 <110 <210 <25 <25 <25 <90 <120 Meth	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recove Original	erable Hydrocarbons) Duplicate		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	90 120 20 45 45 100 110 210 25 25 90 120 LOR	<90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 Original	<90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Mether	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recove Original	erable Hydrocarbons)		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg	90 120 20 45 45 100 110 210 25 25 90 120 LOR 50	<pre><90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90 <120 </pre>	<pre><90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth Duplicate <0.05</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recove Original	erable Hydrocarbons) Duplicate		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16- Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg	90 120 20 45 45 100 110 210 25 25 90 120 120 LOR 50 200	<pre><90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90 <120 Original <0.05 <0.2</pre>	<pre><90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth Duplicate <0.05 <0.2</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE248520.003 RH (Total Recove Original SE248418.001	erable Hydrocarbons) Duplicate		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg<	90 120 20 45 45 100 110 210 25 25 90 120 120 LOR 50 200 200	<90 <120 <20 <45 <100 <110 <210 <25 <25 <90 <120 Original <0.05 <0.2 <0.2	<90 <120 <20 <45 <100 <110 <210 <25 <25 <90 <120 Meth Duplicate <0.05 <0.2 <0.2	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recove Original	erable Hydrocarbons) Duplicate		TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16- Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg	90 120 20 45 45 100 110 210 25 25 90 120 120 LOR 50 200	<pre><90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90 <120 Original <0.05 <0.2</pre>	<pre><90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth Duplicate <0.05 <0.2</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

) in Water (continue							-[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248418.001	LB281260.028	TRH F Bands	TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<0.06	<0.06	200	0
			TRH >C16-C34 (F3)	µg/L	500	<0.5	<0.5	200	0
			TRH >C34-C40 (F4)	µg/L	500	<0.5	<0.5	200	0
SE248519.004	LB281260.029		TRH C10-C14	µg/L	50	<0.05	<0.05	200	0
			TRH C15-C28	µg/L	200	<0.2	<0.2	200	0
			TRH C29-C36	µg/L	200	<0.2	<0.2	200	0
			TRH C37-C40	µg/L	200	<200	<200	200	0
			TRH C10-C40	µg/L	320	<0.32	<0.32	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<0.06	<0.06	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<0.06	<0.06	200	0
			TRH >C16-C34 (F3)	μg/L	500	<0.5	<0.5	200	0
			TRH >C34-C40 (F4)	µg/L	500	<0.5	<0.5	200	0
/OC's in Soil			· · ·				Metho	: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281393.034	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	8.0	50	6
			d8-toluene (Surrogate)	mg/kg	-	7.8	8.3	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.8	50	2
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE248520.003	LB281393.038	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	0	200	0
		•	1,2-dichloropropane	mg/kg	0.1	<0.1	0	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	0	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	0.0006044402	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	0.0003560996	200	0
		Aliphatics	Chloromethane	mg/kg	1	<1	0.00003000390	200	0
		Aliphatics							0
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	0.0006938182	200	
			Bromomethane	mg/kg	1	<1	0	200	0
			Chloroethane	mg/kg	1	<1	0	200	0
			Trichlorofluoromethane	mg/kg	1	<1	0.0012799566	200	0
			1,1-dichloroethene	mg/kg	0.1	<0.1	0	200	0
			lodomethane	mg/kg	5	<5	0	200	0
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	0	200	0
			Allyl chloride	mg/kg	0.1	<0.1	0	200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	0	200	0
			1,1-dichloroethane	mg/kg	0.1	<0.1	0	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	0	200	0
			Bromochloromethane	mg/kg	0.1	<0.1	0.0037407517	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.1	0.0013438784	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	0	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.1	0	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.1	0	200	0
			Dibromomethane	mg/kg	0.1	<0.1	0.0004764415	200	0
			Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	0	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	0	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	0	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	0	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	0	200	0
			1,1,2,2-tetrachloroethane		0.1	<0.1	0	200	0
				mg/kg					0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	0	200	
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	0	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	0	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	0.0005532269	200	0
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	0.0010806479	200	0

where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR SE248520.003 LB281393.038 Halogenated 0.1 <0.1 0 200 Bromobenzene mg/kg 0 Aromatics 2-chlorotoluene mg/kg 0.1 <0.1 0.0010185295 200 0 0.1 <0.1 0 4-chlorotoluene 0 200 mg/kg 1,3-dichlorobenzene 0.1 <0.1 0.0027700909 200 0 mg/kg 1.4-dichlorobenzene 0 1 <0.1 0 0028340129 200 0 mg/kg 1,2-dichlorobenzene 0.1 <0.1 0.0005202981 200 0 mg/kg 1.2.4-trichlorobenzene <0.1 0.0003351943 200 0.1 0 ma/ka 1.2.3-trichlorobenzene 0.1 < 0.1 0.0004681287 200 0 mg/kg Monocyclic <0.1 200 Benzene 0.1 <0.1 0 mg/kg Aromatic Toluene 0.1 <0.1 <0.1 200 0 mg/kg Ethylbenzene 0.1 <0.1 <0.1 200 0 mg/kg 0.2 <0.2 <0.2 200 0 m/p-xylene mg/kg Styrene (Vinyl benzene) <0.1 0 200 0 ma/ka 0.1 o-xylene 0.1 < 0.1 < 0.1 200 0 mg/kg <0.1 Isopropylbenzene (Cumene) 0.1 0 200 0 mg/kg 0.0006271325 n-propylbenzene 0.1 <0.1 200 0 mg/kg 1,3,5-trimethylbenzene 0.1 < 0.1 0.0012020136 200 0 mg/kg <0.1 0.0002580393 tert-butylbenzene mg/kg 0.1 200 0 1,2,4-trimethylbenzene 0.1 <0.1 0.0014774246 200 0 mg/kg sec-butylbenzene 0 1 <0.1 0 200 0 mg/kg <0.1 0.0015173423 p-isopropyltoluene 0.1 200 0 mg/kg 0.0003848723 n-butvlbenzene 0.1 <0.1 200 0 ma/ka Nitrogenous Acrylonitrile 0.1 < 0.1 0 200 0 mg/kg Compounds 2-nitropropane 10 <10 0 200 0 mg/kg Oxygenated 10 200 0 Acetone (2-propanone) mg/kg <10 0 Compounds MtBE (Methyl-tert-butyl ether) mg/kg 0.1 <0.1 0 200 0 Vinyl acetate* 10 <10 0 200 0 mg/kg MIBK (4-methyl-2-pentanone) 0.0026300573 ma/ka 1 <1 200 0 2-hexanone (MBK) <5 0 200 0 mg/kg 5 Polycyclic Naphthalene (VOC) 0.1 <0.1 <0.1 200 0 mg/kg <0.5 Sulphonated Carbon disulfide mg/kg 0.5 0 200 0 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 7.6 7.5 50 1 50 d8-toluene (Surrogate) 6.8 6.4 5 mg/kg Bromofluorobenzene (Surrogate) mg/kg 7.7 7.5 50 2 Totals Total Other Chlorinated Hydrocarbons VIC EPA* 18 <1.8 0 0103473072 200 0 mg/kg 0.0115943525 Total Chlorinated Hydrocarbons VIC EPA* 1.8 <1.8 200 0 mg/kg Total BTEX* 0.6 <0.6 <0.6 0 ma/ka 200 Total Volatile Chlorinated Hydrocarbons* mg/kg 3 <3.0 0.0102379974 200 0 0.0364746734 Total VOC* 24 <24 200 0 mg/kg Total Xylenes* mg/kg 0.3 <0.3 <0.3 200 0 Trihalomethan Chloroform (THM) 0.1 <0.1 0.0042332754 200 0 mg/kg Bromodichloromethane (THM) es mg/kg 0.1 <0.1 0 200 0 Dibromochloromethane (THM) <0.1 mg/kg 0.1 0 200 0 Bromoform (THM) mg/kg 0.1 <0.1 0.0002196119 200 0 **VOCs in Water** Method: ME-(AU)-[ENV]AN433 Original Duplicate Units LOR Original Duplicate Criteria % RPD % Parameter SE248514.001 LB281645.026 Monocyclic Benzene µg/L 0.5 < 0.5 < 0.5 200 0 Aromatic Toluene 0.5 0.9 1.0 83 4 µg/L 200 Ethylbenzene 0.5 <0.5 <0.5 0 µg/L m/p-xylene µg/L <1 <1 200 0 1 <0.5 <0.5 200 o-xylene µg/L 0.5 0 Polycyclic Naphthalene (VOC)* <0.5 200 0.5 <0.5 0 µg/L Surrogates d4-1,2-dichloroethane (Surrogate) µg/L 10.7 9.6 30 11 d8-toluene (Surrogate) 9.9 9.5 30 4 µg/L Bromofluorobenzene (Surrogate) 10.9 10.3 30 6 µg/L Totals Total BTEX µg/L 3 <3 <3 200 0 Monocyclic SE248514 002 LB281645.027 0.5 <0.5 <0.5 200 0 Benzene µg/L

Aromatic

Toluene

Ethylbenzene

m/p-xylene

0

0

0

0.5

0.5

1

µg/L

µg/L

µg/L

6.1

<0.5

<1

6.1

<0.5

<1

38

200

200

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

/OCs in Water (co	ontinued)						Met	hod: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.002	LB281645.027	Monocyclic	o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.5	9.7	30	8
			d8-toluene (Surrogate)	µg/L	-	9.8	9.6	30	2
			Bromofluorobenzene (Surrogate)	μg/L	-	10.7	10.5	30	2
		Totals	Total BTEX	µg/L	3	6	6	79	0
/olatile Petroleum	Hydrocarbons in So	il					Met	hod: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281393.034		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	8.0	50	6
			d8-toluene (Surrogate)	mg/kg	-	7.8	8.3	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.8	50	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE248520.003	LB281393.035		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	7.5	50	1
			d8-toluene (Surrogate)	mg/kg	-	6.8	6.4	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.7	7.5	30 30 30 79 ethod: ME-(AU)-[EN] te Criteria % R 200 200 50 50 50 200 200 200 2	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
/olatile Petroleum	Hydrocarbons in Wa	ater					Met	hod: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.001	LB281645.026		TRH C6-C10	μg/L	50	<50	<50	189	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.7	9.6	30	11
			d8-toluene (Surrogate)	µg/L	-	9.9	9.5	30	4
			Bromofluorobenzene (Surrogate)	µg/L	-	10.9	10.3	30	6
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	194	0
SE248514.002	LB281645.027		TRH C6-C10	μg/L	50	79	130	79	46
			TRH C6-C9	µg/L	40	56	86	86	42
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.5	9.7	30	8
			d8-toluene (Surrogate)	μg/L	-	9.8	9.6	30	2
			Bromofluorobenzene (Surrogate)	μg/L	-	10.7	10.5	30	2
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	73	120	82	49

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				N	Nethod: ME-(A	U)-[ENV]AN312
Sample Number Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281397.002 Mercury	mg/kg	0.05	0.23	0.2	80 - 120	114

OC Pesticides in S	oil					N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Delta BHC	mg/kg	0.1	0.1	0.2	60 - 140	74
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	76
		Aldrin	mg/kg	0.1	0.1	0.2	60 - 140	74
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	74
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	72
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	67
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	83
OP Pesticides in S	oil					N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	83
		Diazinon (Dimpylate)	mg/kg	0.5	1.6	2	60 - 140	82
		Dichlorvos	mg/kg	0.5	1.4	2	60 - 140	71
		Ethion	mg/kg	0.2	1.7	2	60 - 140	83
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	101
PAH (Polynuclear /	Aromatic Hydroca	rbons) in Soil				N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Naphthalene	mg/kg	0.1	3.8	4	60 - 140	94
		Acenaphthylene	mg/kg	0.1	3.8	4	60 - 140	94
		Acenaphthene	mg/kg	0.1	4.1	4	60 - 140	102
		Phenanthrene	mg/kg	0.1	4.0	4	60 - 140	100
		Anthracene	mg/kg	0.1	3.9	4	60 - 140	97
		Fluoranthene	mg/kg	0.1	3.7	4	60 - 140	92
		Pyrene	mg/kg	0.1	4.3	4	60 - 140	107
		Benzo(a)pyrene	mg/kg	0.1	3.6	4	60 - 140	89
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	101
PAH (Polynuclear /	Aromatic Hydroca	rbons) in Water				I	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281260.002		Naphthalene	μg/L	0.1	37	40	60 - 140	94
		Acenaphthylene	μg/L	0.1	46	40	60 - 140	115
		Acenaphthene	μg/L	0.1	43	40	60 - 140	106
		Phenanthrene	μg/L	0.1	46	40	60 - 140	116
		Anthracene	µg/L	0.1	49	40	60 - 140	122
		Fluoranthene	µg/L	0.1	50	40	60 - 140	125
		Pyrene	μg/L	0.1	49	40	60 - 140	123
		Benzo(a)pyrene	μg/L	0.1	49	40	60 - 140	122
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.5	40 - 130	52
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	58
		d14-p-terphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	82
PCBs in Soil						N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	79

Total Cyanide in soil by Discrete Analyser

Total Cyanide in soil by Discrete Analyser Method: ME-(AU)-[ENV]AN07						√JAN077/AN287	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281641.002	Total Cyanide	mg/kg	0.5	<0.5	0.25	70 - 130	105

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Phenolics in Soil					N	lethod: ME-(A	U)-[ENV]AN295
Sample Number	Parameter	Uni	s LOR	Result	Expected	Criteria %	Recovery %
LB281632.002	Total Phenols	mg/kg	0.5	20	20	80 - 120	100

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB281395.002		Arsenic, As	mg/kg	1	350	318.22	80 - 120	110
		Cadmium, Cd	mg/kg	0.3	3.6	4.81	70 - 130	75
		Chromium, Cr	mg/kg	0.5	41	38.31	80 - 120	106
		Copper, Cu	mg/kg	0.5	330	290	80 - 120	114
		Nickel, Ni	mg/kg	0.5	200	187	80 - 120	105
		Lead, Pb	mg/kg	1	96	89.9	80 - 120	107
		Zinc, Zn	mg/kg	2	290	273	80 - 120	107
race Metals (Diss	olved) in Water by	ICPMS				1	Method: ME-(AL)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB281319.002		Arsenic	μg/L	1	22	20	80 - 120	109
		Cadmium	μg/L	0.1	21	20	80 - 120	106
		Chromium	μg/L	1	22	20	80 - 120	108
		Copper	μg/L	1	21	20	80 - 120	105
		Lead	μg/L	1	20	20	80 - 120	100
		Nickel		1	20	20	80 - 120	110
		Zinc	μg/L	5	22	20		105
DUI (Total Deseur	and the theory of the second second		μg/L	5	21		80 - 120	
Sample Number	erable Hydrocarbor	Parameter	Units	LOR	Result	Expected	Method: ME-(AU Criteria %	Recover
.B281392.002				20		40		
_B281392.002		TRH C10-C14	mg/kg		38		60 - 140	96
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	82
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	87
	TRH F Bands	TRH >C10-C16	mg/kg	25	38	40	60 - 140	95
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	86
RH (Total Recove	arable Hydrocarbor	ns) in Water				I	Method: ME-(AU	I)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B281260.002		TRH C10-C14	µg/L	50	980	1200	60 - 140	82
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	97
		TRH C29-C36	μg/L	200	1200	1200	60 - 140	97
	TRH F Bands	TRH C29-C36 TRH >C10-C16	μg/L μg/L	200 60	1200 1000	1200 1200	60 - 140 60 - 140	97 87
	TRH F Bands							
	TRH F Bands	TRH >C10-C16	μg/L μg/L	60	1000	1200	60 - 140	87
OC's in Soll	TRH F Bands	TRH >C10-C16 TRH >C16-C34 (F3)	µg/L	60 500	1000 1200	1200 1200 600	60 - 140 60 - 140 60 - 140	87 99 100
OC's in Soil Sample Number		TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4)	μg/L μg/L μg/L	60 500 500	1000 1200 600	1200 1200 600	60 - 140 60 - 140 60 - 140 Method: ME-(AL	87 99 100)-[ENV]A
Sample Number		TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter	μg/L μg/L μg/L Units	60 500 500	1000 1200 600 Result	1200 1200 600 Expected	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria %	87 99 100)-[ENV]A Recover
Sample Number	Halogenated	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene	μg/L μg/L μg/L Units mg/kg	60 500 500 LOR 0.1	1000 1200 600 Result 4.5	1200 1200 600 Expected 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140	87 99 100 I)-[ENV]A Recover 90
Sample Number		TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane	μg/L μg/L μg/L Units mg/kg mg/kg	60 500 500 LOR 0.1 0.1	1000 1200 600 Result 4.5 4.9	1200 1200 600 Expected 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99
Sample Number	Halogenated Aliphatics	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE)	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	60 500 500 LOR 0.1 0.1 0.1	1000 1200 600 Result 4.5 4.9 5.0	1200 1200 600 Expected 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99 101
<mark>OC's in Soll</mark> Sample Number .B281393.002	Halogenated Aliphatics Halogenated	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	60 500 500 0.1 0.1 0.1 0.1 0.1	1000 1200 600 Result 4.5 4.9 5.0 5.6	1200 1200 600 Expected 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99 101 113
Sample Number	Halogenated Aliphatics Halogenated Monocyclic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	60 500 500 LOR 0.1 0.1 0.1 0.1 0.1 0.1	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3	1200 1200 600 Expected 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99 101 113 87
Sample Number	Halogenated Aliphatics Halogenated	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	60 500 500 LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5	1200 1200 600 Expected 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99 101 113 87 90
Sample Number	Halogenated Aliphatics Halogenated Monocyclic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	60 500 500 LOR 0.1 0.1 0.1 0.1 0.1 0.1	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3	1200 1200 600 Expected 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99 101 113 87
Sample Number	Halogenated Aliphatics Halogenated Monocyclic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 4.5 4.3 8.5	1200 1200 600 Expected 5 5 5 5 5 5 5 5 10	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	87 99 100)-[ENV]A Recover 90 99 101 113 87 90 87 85
Sample Number	Halogenated Aliphatics Halogenated Monocyclic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3	1200 1200 600 Expected 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140	87 99 100)-J-[ENV]Al Recover 90 99 101 113 87 90 87
Sample Number	Halogenated Aliphatics Halogenated Monocyclic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethane (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	μg/L μg/L μg/L	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 4.5 4.3 8.5	1200 1200 600 Expected 5 5 5 5 5 5 5 5 10	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140	87 99 100 D-[ENV]A Recover 90 99 101 113 87 90 87 85
Sample Number	Halogenated Aliphatics Halogenated Monocyclic Aromatic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3	1200 1200 600 Expected 5 5 5 5 5 5 5 5 10 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140	87 99 100 I)-[ENV]A Recover 90 99 101 113 87 90 87 85 86
Sample Number	Halogenated Aliphatics Halogenated Monocyclic Aromatic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9	1200 1200 600 Expected 5 5 5 5 5 5 5 5 10 5 10	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130	87 99 100))-[ENV]A Recover 90 99 101 113 87 90 87 85 86 88
Sample Number	Halogenated Aliphatics Halogenated Monocyclic Aromatic	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene, TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L Units mg/kg	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9 7.1	1200 1200 600 Expected 5 5 5 5 5 5 5 5 5 5 10 5 10 10	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130 70 - 130	87 99 100))-[ENV]A Recover 90 99 101 113 87 90 87 85 86 86 89 71
Sample Number .B281393.002	Halogenated Aliphatics Halogenated Monocyclic Aromatic Surrogates	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L Units mg/kg	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 - -	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9 7.1 9.1	1200 1200 600 Expected 5 5 5 5 5 5 5 5 10 5 10 5 10 10 5 10 10 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130	87 99 100)-[ENV]A Recover 90 90 101 113 87 90 87 85 86 88 89 71 91
Sample Number B281393.002	Halogenated Aliphatics Halogenated Monocyclic Aromatic Surrogates Trihalomethan	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform (THM)	μg/L μg/L μg/L μg/L	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9 7.1 9.1 5.4	1200 1200 600 Expected 5 5 5 5 5 5 5 5 5 5 10 5 10 10 10 10 10 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AL	87 99 100)-[ENV]A 8cover 90 99 101 113 87 90 87 85 86 88 89 71 91 108
Sample Number B281393.002 OCs in Water Sample Number	Halogenated Aliphatics Halogenated Monocyclic Aromatic Surrogates Trihalomethan	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform (THM)	μg/L μg/L μg/L μg/L	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9 7.1 9.1 5.4 Result	1200 1200 600 Expected 5 5 5 5 5 5 5 5 5 5 5 5 10 5 5 10 10 10 10 10 10 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AL Criteria %	87 99 100)-[ENV]A Recover 90 90 101 113 87 90 87 85 86 89 71 91 108 71 91 108
Sample Number	Halogenated Aliphatics Halogenated Monocyclic Aromatic Surrogates Trihalomethan	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform (THM)	μg/L μg/L μg/L μg/L Units mg/kg mg/kg	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9 7.1 9.1 5.4 Result 45	1200 1200 600 Expected 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AL Criteria % 60 - 140	87 99 100)-[ENV]A Recover 90 99 101 113 87 90 87 85 86 89 71 91 108 91 108 Recover 99
B281393.002 B281393.002 DCs in Water Sample Number	Halogenated Aliphatics Halogenated Monocyclic Aromatic Surrogates Trihalomethan	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform (THM)	μg/L μg/L μg/L μg/L	60 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1000 1200 600 Result 4.5 4.9 5.0 5.6 4.3 4.5 4.3 8.5 4.3 8.5 4.3 8.9 7.1 9.1 5.4 Result	1200 1200 600 Expected 5 5 5 5 5 5 5 5 5 5 5 5 10 5 5 10 10 10 10 10 10 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AL Criteria %	87 99 100)-[ENV], Recove 90 90 100 110 110 87 85 86 89 71 90 87 85 86 89 71 90 87 85 86 89 71

µg/L

µg/L

0.5

1

46

94

45.45

90.9

60 - 140

60 - 140

Ethylbenzene

m/p-xylene

102

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OCs in Water (co	ntinued)					N	Method: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281645.002	Monocyclic	o-xylene	µg/L	0.5	47	45.45	60 - 140	103
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	µg/L	-	11.1	10	70 - 130	111
		Bromofluorobenzene (Surrogate)	μg/L	-	10.0	10	70 - 130	100
/olatile Petroleum	Hydrocarbons in S	Soil				I	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281393.002		TRH C6-C10	mg/kg	25	69	92.5	60 - 140	74
		TRH C6-C9	mg/kg	20	59	80	60 - 140	74
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.9	10	70 - 130	89
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	43	62.5	60 - 140	68
/olatile Petroleum	Hydrocarbons in V	Vater				I	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281645.002		TRH C6-C10	µg/L	50	800	946.63	60 - 140	85
		TRH C6-C9	µg/L	40	700	818.71	60 - 140	85
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	μg/L	-	11.1	10	70 - 130	111
		Bromofluorobenzene (Surrogate)	μg/L	-	10.0	10	70 - 130	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	530	639.67	60 - 140	82

MATRIX SPIKES

SE248520 R0

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water		Met	hod: ME-(AU)-[ENVJAN311	(Perth)/AN312		
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248497.027	LB281263.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	90

Mercury in Soil

-								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248444.031	LB281397.004	Mercury	mg/kg	0.05	0.24	<0.05	0.2	108

OC Pesticides in Soil

							mou)-frage base
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	78
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	83
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	81
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	80
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	78
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	
			o,p'-DDD*	mg/kg	0.2	<0.2	<0.2		
					0.1	<0.1	<0.1	-	
			p,p'-DDD	mg/kg		<0.1	<0.1	-	
			Endrin aldehyde	mg/kg	0.1			-	
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1			-
			p,p'-DDT	mg/kg	0.1	0.1	<0.1	0.2	70
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	<1	-	-
			Total OC VIC EPA	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.14	-	89
Pesticides in	Soil						Met	hod: ME-(Al	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E248444.031	LB281392.004		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2		-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	<0.2	2	85
			Diazinon (Dimpylate)	mg/kg	0.5	1.7	<0.5	2	85
			Dichlorvos	mg/kg	0.5	1.5	<0.5	2	76
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.8	<0.2	2	89
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	
			Malathion	mg/kg	0.2	<0.2	<0.2		_
			Methidathion	mg/kg	0.5	<0.2	<0.5		
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2		
			Total OP Pesticides*	mg/kg	1.7	6.7	<1.7		
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	- 88
		Sundyales	d14-p-terphenyl (Surrogate)			0.4	0.5	-	96
			a i+-p-terpitetiyi (ouriogate)	mg/kg	-	0.5			
H (Polynuclea	r Aromatic Hydrocarb	ons) in Soil					Met	hod: ME-(Al	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR				

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	-								
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248444.031	LB281392.004		Naphthalene	mg/kg	0.1	3.6	<0.1	4	90
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	3.6	<0.1	4	90
			Acenaphthene	mg/kg	0.1	3.9	<0.1	4	97
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	3.8	<0.1	4	96
			Anthracene	mg/kg	0.1	3.7	<0.1	4	91
			Fluoranthene	mg/kg	0.1	3.5	<0.1	4	89
			Pyrene	mg/kg	0.1	3.9	<0.1	4	98
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.4	<0.1	4	86
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.4</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	3.4	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.5</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.5	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.6</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	3.6	<0.3	-	-
			Total PAH (18)	mg/kg	0.8	29	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	91
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	96
otal Phenolics i	n Soll						Meth	od: ME-(AL	J)-[ENV]AN29
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E248373.021	LB281632.004		Total Phenols	mg/kg	0.5	22	0.5	20	107
E248436.001	LB281632.011		Total Phenols	mg/kg	0.5	21	<0.5	20	105

		Solids/Materials by ICPOES						JAN040/AN32
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281395.004	Arsenic, As	mg/kg	1	46	3	50	87
		Cadmium, Cd	mg/kg	0.3	44	<0.3	50	88
		Chromium, Cr	mg/kg	0.5	57	11	50	92
		Copper, Cu	mg/kg	0.5	57	12	50	91
		Nickel, Ni	mg/kg	0.5	48	3.4	50	89
		Lead, Pb	mg/kg	1	51	10	50	83
		Zinc, Zn	mg/kg	2	59	13	50	93
race Metals (Di	ssolved) in Water by ICP	MS				Met	hod: ME-(Al	J)-[ENV]AN3
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248497.027	LB281319.004	Arsenic	µg/L	1	22	<1	20	109
		Cadmium	µg/L	0.1	21	<0.1	20	106
		Chromium	µg/L	1	22	<1	20	108
		Copper	μg/L	1	21	<1	20	105
		Lead	µg/L	1	20	<1	20	101
		Nickel	μg/L	1	21	<1	20	107
		Zinc	μg/L	5	23	<5	20	96
RH (Total Reco	verable Hydrocarbons) ir	Soil				Meti	hod: ME-(Al	J)-[ENV]AN4
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004	TRH C10-C14	mg/kg	20	42	<20	40	105
		TRH C15-C28	mg/kg	45	<45	<45	40	100
		TRH C29-C36	mg/kg	45	55	<45	40	109
		TRH C37-C40	mg/kg	100	<100	<100	-	-
		TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
		TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F TRH >C10-C16	mg/kg	25	41	<25	40	103

mg/kg

25

41

<25

Bands

TRH >C10-C16 - Naphthalene (F2)

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

RH (Total Reco	verable Hydrocarbon	ıs) in Soil (continı	ied)				Metho	od: ME-(AU)- [ENV]AN 4(
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004	TRH F	TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	111
		Bands	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
/OC's in Soil							Meth	od: ME-(AU)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281393.004	Monocyclic	Benzene	mg/kg	0.1	4.2	<0.1	5	83
		Aromatic	Toluene	mg/kg	0.1	4.4	<0.1	5	87
			Ethylbenzene	mg/kg	0.1	4.5	<0.1	5	90
			m/p-xylene	mg/kg	0.2	9.1	<0.2	10	91
			o-xylene	mg/kg	0.1	4.6	<0.1	5	92
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	7.8	10	79
			d8-toluene (Surrogate)	mg/kg	-	8.0	8.1	10	80
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.4	8.9	10	84
		Totals	Total BTEX*	mg/kg	0.6	27	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	14	<0.3	-	-
OCs in Water							Meth	od: ME-(AU)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE248508.001	LB281645.028	Monocyclic	Benzene	μg/L	0.5	46	0	45.45	101
		Aromatic	Toluene	µg/L	0.5	45	0.00255782834	45.45	100
			Ethylbenzene	µg/L	0.5	47	0.00245693472	45.45	104
			m/p-xylene	µg/L	1	92	0.00629256885	90.9	102
			o-xylene	µg/L	0.5	47	0.00828518845	45.45	102
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	47	0.01167884979	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.3	10.75113387777	-	93
			d8-toluene (Surrogate)	µg/L	-	11.0	9.75816417905	-	110
			Bromofluorobenzene (Surrogate)	µg/L	-	9.5	11.15965161397	-	95
		Totals	Total BTEX	μg/L	3	280	0	-	-
				µg/L	5				
olatile Petroleu	m Hydrocarbons in S			µy/∟			Metho	od: ME-(AU)-[ENV]AN4
	<mark>m Hydrocarbons in So</mark> Sample Number	oil	Parameter	Units	LOR	Result	Methe Original	<mark>od: ME-(AU</mark> Spike	
QC Sample	-	oil	Parameter _TRH C6-C10			Result 84		· · ·	
QC Sample	Sample Number	oil		Units	LOR		Original	Spike	Recover
QC Sample	Sample Number	oil	TRH C6-C10	Units mg/kg	LOR 25	84	Original <25	Spike 92.5	Recover 90
QC Sample	Sample Number	ioil	TRH C6-C10 TRH C6-C9	Units mg/kg mg/kg	LOR 25 20	84 74	Original <25 <20	Spike 92.5 80	Recover 90 93
QC Sample	Sample Number	ioil	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg	LOR 25 20 -	84 74 7.9	Original <25 <20 7.8	Spike 92.5 80 10	Recover 90 93 79
QC Sample	Sample Number	ioil	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20 -	84 74 7.9 8.0	Original <25 <20 7.8 8.1	Spike 92.5 80 10 10	Recover 90 93 79 80
QC Sample	Sample Number	Surrogates	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - -	84 74 7.9 8.0 8.4	Original <25 <20 7.8 8.1 8.9	Spike 92.5 80 10 10	Recover 90 93 79 80 84
QC Sample SE248444.031	Sample Number	Surrogates VPH F Bands	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1	84 74 7.9 8.0 8.4 4.2	Original <25 <20 7.8 8.1 8.9 <0.1 <25	Spike 92.5 80 10 10 - -	Recover 90 93 79 80 84 - 91
QC Sample SE248444.031 olatile Petroleur	Sample Number LB281393.005	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1	84 74 7.9 8.0 8.4 4.2	Original <25 <20 7.8 8.1 8.9 <0.1 <25	Spike 92.5 80 10 10 - - 62.5	Recover 90 93 79 80 84 - 91
QC Sample SE248444.031 olatile Petroleur QC Sample	Sample Number LB281393.005 m Hydrocarbons in W	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - 0.1 25	84 74 7.9 8.0 8.4 4.2 57	Original <25	Spike 92.5 80 10 10 - 62.5 od: ME-(AU	Recover 90 93 79 80 84 - 91
QC Sample SE248444.031 Olatile Petroleur QC Sample	Sample Number LB281393.005 m Hydrocarbons in W Sample Number	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - 0.1 25 LOR	84 74 7.9 8.0 8.4 4.2 57 8 Result	Original <25 <20 7.8 8.1 8.9 <0.1 <25 Metho Original	Spike 92.5 80 10 - - 62.5 od: ME-(AU Spike	Recover 90 93 79 80 84 - 91)-[ENV]AN Recover
QC Sample SE248444.031 olatile Petroleur QC Sample	Sample Number LB281393.005 m Hydrocarbons in W Sample Number	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L	LOR 25 20 - - 0.1 25 LOR 50	84 74 7.9 8.0 8.4 4.2 57 Result 1000	Original <25	Spike 92.5 80 10 - - 62.5 od: ME-(AU Spike 946.63	Recover 90 93 79 80 84 - 91)-[ENV]AN- Recover 105
QC Sample SE248444.031 Olatile Petroleur QC Sample	Sample Number LB281393.005 m Hydrocarbons in W Sample Number	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	Units mg/kg	LOR 25 20 - - 0.1 25 LOR 50 40	84 74 7.9 8.0 8.4 4.2 57 Result 1000 860	Original <25	Spike 92.5 80 10 - - 62.5 od: ME-(AU Spike 946.63	Recover 90 93 79 80 84 - 91 91)-[ENV]AN/ Recover 105 105
QC Sample SE248444.031 olatile Petroleur QC Sample	Sample Number LB281393.005 m Hydrocarbons in W Sample Number	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	LOR 25 20 - - - 0.1 25 LOR 50 40 -	84 74 7.9 8.0 8.4 4.2 57 Result 1000 860 9.3	Original <25 <20 7.8 8.1 8.9 <0.1 <25 Methe Original 0 0 10.75113387777	Spike 92.5 80 10 - - 62.5 od: ME-(AU Spike 946.63 818.71 -	Recover 90 93 79 80 84 - 91 Note: Recover 105 105 93
QC Sample SE248444.031	Sample Number LB281393.005 m Hydrocarbons in W Sample Number	Surrogates VPH F Bands Vater	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg	LOR 25 20 - - 0.1 25 25 LOR 50 40 -	84 74 7.9 8.0 8.4 4.2 57 Result 1000 860 9.3 11.0	Original <25 <20 7.8 8.1 8.9 <0.1 <25 Methe Original 0 0 10.75113387777 9.75816417905	Spike 92.5 80 10 - 62.5 od: ME-(AU Spike 946.63 818.71 -	Recover 90 93 79 80 84 - 91 91 91 91 91 91 91 91 91 91 91 91 91

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Sergio Raposeira El AUSTRALIA SUITE 6.01	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St
Address	55 MILLER STREET PYRMONT NSW 2009	Address	Alexandria NSW 2015
Telephone Facsimile	61 2 95160722 (Not specified)	Telephone Facsimile	+61 2 8594 0400 +61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope St Melrose Park	SGS Reference	SE248520 R1
Order Number	E26047	Date Received	31 May 2023
Samples	8	Date Reported	16 Jun 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

1 item

Date documentation received		1/6/2023@3:07pm	Samples received in good order		Yes		
Samples received without headspace		Yes	Sample temperature upon receipt		17.2°C		
Sample container provider		SGS	Turnaround time requested		Standard		
Samples received in correct containers		Yes	Sufficient sample for analysis		Yes		
Sample cooling method		Ice Bricks	Samples clearly labelled		Yes		
SGS Australia Pty Ltd	Environment. Health and	Yes	addox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sqs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Healt

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

0499 Member of the SGS Group

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

ibre Identification in soil							Method: ME-(AU)	-[ENV]AS4964/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	SE248520.001	LB281962	31 May 2023	31 May 2023	30 May 2024	08 Jun 2023	30 May 2024	09 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281962	31 May 2023	31 May 2023	30 May 2024	08 Jun 2023	30 May 2024	09 Jun 2023
IA2_0.2-0.3	SE248520.003	LB281962	31 May 2023	31 May 2023	30 May 2024	08 Jun 2023	30 May 2024	09 Jun 2023
ravimetric Determination	of Asbestos in Soil						Method: I	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A4_0.2-0.3	SE248520.001	LB281962	31 May 2023	31 May 2023	27 Nov 2023	08 Jun 2023	27 Nov 2023	09 Jun 2023
IA1_0.2-0.3	SE248520.002	LB281962	31 May 2023	31 May 2023	27 Nov 2023	08 Jun 2023	27 Nov 2023	09 Jun 2023
IA2_0.2-0.3	SE248520.003	LB281962	31 May 2023	31 May 2023	27 Nov 2023	08 Jun 2023	27 Nov 2023	09 Jun 2023
ercury (dissolved) in Wate	ər						Method: ME-(AU)-[ENV]AN311(Perth)/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248520.008	LB281263	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	02 Jun 2023
lercury in Soil							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
1A4_0.2-0.3	SE248520.001	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
QD1	SE248520.004	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
QD2	SE248520.005	LB281397	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	07 Jun 2023
oisture Content							Method: I	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
IA4_0.2-0.3	SE248520.001	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
IA1_0.2-0.3	SE248520.002	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
IA2_0.2-0.3	SE248520.003	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
2D1	SE248520.004	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
2D2	SE248520.005	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
Frip Blank	SE248520.006	LB281394	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	07 Jun 2023	06 Jun 2023
C Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
2D2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
P Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
AH (Polynuclear Aromatic	· · ·							ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
QD2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	07 Jun 2023
AH (Polynuclear Aromatic	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN
Comple Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name								

PCBs in Soil

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample Ne	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	ME-(AU)-[ENV]AN
	Sample No.				Extraction Due			Analysed
HA4_0.2-0.3	SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
QD1	SE248520.004	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
QD2	SE248520.005	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
otal Cyanide in soil by Dis	screte Analyser						Method: ME-(AU)-[ENV]AN077/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	SE248520.001	LB281641	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281641	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281641	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023
otal Phenolics in Soil							Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	SE248520.001	LB281632	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	06 Jun 2023
HA1_0.2-0.3	SE248520.002	LB281632	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	06 Jun 2023
HA2_0.2-0.3	SE248520.003	LB281632	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	06 Jun 2023
otal Recoverable Element	ts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-IENVIAN040/AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HA4_0.2-0.3	Sample No. SE248520.001	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
HA4_0.2-0.3	SE248520.001	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
HA1_0.2-0.3 HA2_0.2-0.3	SE248520.002	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
QD1	SE248520.003	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
QD2	SE248520.005	LB281395	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	07 Jun 2023
		LD201333	51 Way 2025	51 Way 2025	27 100 2023	02 3011 2023		
race Metals (Dissolved) ir	NWater by ICPMS						Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248520.008	LB281319	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	05 Jun 2023
		OC Pof	Sampled	Pacaivad	Extraction Duo	Extracted		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name HA4_0.2-0.3	Sample No. SE248520.001	LB281392	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	Analysis Due 12 Jul 2023	Analysed 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3	Sample No. SE248520.001 SE248520.002	LB281392 LB281392	31 May 2023 31 May 2023	31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3	Sample No. SE248520.001 SE248520.002 SE248520.003	LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004	LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
RH (Total Recoverable H) Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 IRH (Total Recoverable H)	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 IRH (Total Recoverable H Sample Name	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No.	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due	07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 VE-(AU)-[ENV]AI Analysed
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]AI
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No.	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]AI Analysed 08 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable Hy) Sample Name QR1 /OC's in Soil	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023	14 Jun 2023 07 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]AI Analysed 08 Jun 2023 ME-(AU)-[ENV]AI
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received	14 Jun 2023 07 Jun 2023 Extraction Due 07 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]AI Analysed 08 Jun 2023 ME-(AU)-[ENV]AI Analysed
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023	14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]AI Analysed 08 Jun 2023 ME-(AU)-[ENV]AI Analysed 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.008	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]AI Analysed 08 Jun 2023 ME-(AU)-[ENV]AI Analysed 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 SE248520.001 SE248520.001 SE248520.002 SE248520.003	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 08 Jun 2023 ME-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]A Analysed 08 Jun 2023 WE-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 08 Jun 2023 ME-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006	LB281392 LB281392 LB281392 LB281392 LB281392 CC Ref LB281260 CC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 08 Jun 2023 ME-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 RH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA1_0.2-0.3 QD1 QD2 Trip Blank Trip Spike	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005	LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281260 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]A Analysed 08 Jun 2023 ME-(AU)-[ENV]A Analysed 07 Jun 2023 07 Jun 2023
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 TRH (Total Recoverable H) Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike /OC's in Water	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007	LB281392 LB281392 LB281392 LB281392 LB281392 LB281392 QC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun 2023	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]AI Analysed 08 Jun 2023 WE-(AU)-[ENV]AI Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 WE-(AU)-[ENV]AI
Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 TRH (Total Recoverable H Sample Name QR1 /OC's in Soil Sample Name HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike	Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 ydrocarbons) in Water Sample No. SE248520.008 Sample No. SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.001 SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006	LB281392 LB281392 LB281392 LB281392 LB281392 CC Ref LB281260 CC Ref LB281393 LB281393 LB281393 LB281393 LB281393 LB281393	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Sampled 31 May 2023 Sampled 31 May 2023 31 May 2023	31 May 2023 31 May 2023 31 May 2023 31 May 2023 31 May 2023 Received 31 May 2023 Received 31 May 2023 31 May 2023	14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 Extraction Due 07 Jun 2023 Extraction Due 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023 14 Jun 2023	02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 02 Jun 2023 Extracted 02 Jun 2023 02 Jun 2023	Analysis Due 12 Jul 2023 Method: I Analysis Due 12 Jul 2023 Method: I Analysis Due 14 Jun 2023 14 Jun	Analysed 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 07 Jun 2023 ME-(AU)-[ENV]AI Analysed 08 Jun 2023 ME-(AU)-[ENV]AI Analysed 07 Jun 2023 07 Jun 2023

Sample Name Sample No. Analysis Due Analysed QC Ref Received Extraction Due Extracted Sampled HA4_0.2-0.3 SE248520.001 LB281393 31 May 2023 31 May 2023 14 Jun 2023 02 Jun 2023 14 Jun 2023 07 Jun 2023 HA1 0.2-0.3 SE248520.002 31 May 2023 14 Jun 2023 07 Jun 2023 LB281393 31 May 2023 14 Jun 2023 02 Jun 2023 HA2_0.2-0.3 SE248520.003 LB281393 31 May 2023 31 May 2023 14 Jun 2023 02 Jun 2023 14 Jun 2023 07 Jun 2023

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soli (continued) Method: ME-(AU)-[EN									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
QD1	SE248520.004	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023	
QD2	SE248520.005	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023	
Trip Blank	SE248520.006	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023	
Trip Spike	SE248520.007	LB281393	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	07 Jun 2023	
Volatile Petroleum Hydrod	carbons in Water						Method:	ME-(AU)-[ENV]AN43	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
QR1	SE248520.008	LB281645	31 May 2023	31 May 2023	14 Jun 2023	06 Jun 2023	14 Jun 2023	07 Jun 2023	

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	87
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	79
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	82
P Pesticides in Soil				Method: ME	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery ⁶
2-fluorobiphenyl (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	88
z-indrobiphenyi (Surrogate)	HA1 0.2-0.3	SE248520.001	%	60 - 130%	89
	HA2 0.2-0.3		%		88
dd (a tamband (Cumanta)	_	SE248520.003		60 - 130%	
d14-p-terphenyl (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	95
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	97
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	96
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	HA4_0.2-0.3	SE248520.001	%	70 - 130%	88
	HA1_0.2-0.3	SE248520.002	%	70 - 130%	89
	HA2_0.2-0.3	SE248520.003	%	70 - 130%	88
d14-p-terphenyl (Surrogate)	HA4_0.2-0.3	SE248520.001	%	70 - 130%	95
	HA1_0.2-0.3	SE248520.002	%	70 - 130%	97
	HA2_0.2-0.3	SE248520.003	%	70 - 130%	96
d5-nitrobenzene (Surrogate)	HA4_0.2-0.3	SE248520.001	%	70 - 130%	97
	HA1_0.2-0.3	SE248520.002	%	70 - 130%	98
	HA2_0.2-0.3	SE248520.003	%	70 - 130%	96
AH (Polynuclear Aromatic Hydrocarbons) in Water					-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
					,
2-fluorobiphenyl (Surrogate)	QR1	SE248520.008	%	40 - 130%	63
d14-p-terphenyl (Surrogate)	QR1	SE248520.008	%	40 - 130%	79
d5-nitrobenzene (Surrogate)	QR1	SE248520.008	%	40 - 130%	59
CBs in Soil				Method: ME	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
TCMX (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	83
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	75
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	78
OC's in Soil				Method: ME	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	78
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	73
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	77
	QD1	SE248520.004	%	60 - 130%	92
	QD2	SE248520.005	%	60 - 130%	89
	Trip Blank	SE248520.006	%	60 - 130%	95
	Trip Spike	SE248520.007	%	60 - 130%	92
		SE248520.001	%	60 - 130%	82
d4-1,2-dichloroethane (Surrogate)	HA4 0.2-0.3				75
d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.3 HA1 0.2-0.3		%	60 - 130%	
d4-1,2-dichloroethane (Surrogate)	HA1_0.2-0.3	SE248520.002	%	60 - 130% 60 - 130%	
d4-1,2-dichloroethane (Surrogate)	HA1_0.2-0.3 HA2_0.2-0.3	SE248520.002 SE248520.003	%	60 - 130%	76
d4-1,2-dichloroethane (Surrogate)	HA1_0.2-0.3 HA2_0.2-0.3 QD1	SE248520.002 SE248520.003 SE248520.004	%	60 - 130% 60 - 130%	76 82
d4-1,2-dichloroethane (Surrogate)	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.002 SE248520.003 SE248520.004 SE248520.005	% % %	60 - 130% 60 - 130% 60 - 130%	76 82 81
d4-1,2-dichloroethane (Surrogate)	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	76 82 81 87
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	76 82 81 87 86
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	76 82 81 87 86 71
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	76 82 81 87 86 71 72
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.002 SE248520.003	% % % % % %	60 - 130% 60 - 130%	76 82 81 87 86 71 72 68
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004	% % % % % %	60 - 130% 60 - 130%	76 82 81 87 86 71 72 68 84
d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004 SE248520.005	% % % % % % %	60 - 130% 60 - 130%	76 82 81 87 86 71 72 68 84 84
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3 HA1_0.2-0.3 QD1 QD2 Trip Blank	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004 SE248520.003 SE248520.004 SE248520.005 SE248520.005 SE248520.006	% % % % % % %	60 - 130% 60 - 130%	76 82 81 87 86 71 72 68 84 84 82 89
d8-toluene (Surrogate)	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004 SE248520.005	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	76 82 81 87 86 71 72 68 84 82 89 87
	HA1_0.2-0.3 HA2_0.2-0.3 QD1 QD2 Trip Blank Trip Spike HA4_0.2-0.3 HA1_0.2-0.3 HA1_0.2-0.3 QD1 QD2 Trip Blank	SE248520.002 SE248520.003 SE248520.004 SE248520.005 SE248520.006 SE248520.007 SE248520.001 SE248520.002 SE248520.003 SE248520.003 SE248520.004 SE248520.003 SE248520.004 SE248520.005 SE248520.005 SE248520.006	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	76 82 81 87 86 71 72 68 84 84 82 89

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OCs in Water (continued)				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE248520.008	%	40 - 130%	107
d4-1,2-dichloroethane (Surrogate)	QR1	SE248520.008	%	40 - 130%	106
d8-toluene (Surrogate)	QR1	SE248520.008	%	40 - 130%	98
/olatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	78
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	73
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	77
	QD1	SE248520.004	%	60 - 130%	92
	QD2	SE248520.005	%	60 - 130%	89
d4-1,2-dichloroethane (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	82
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	75
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	76
	QD1	SE248520.004	%	60 - 130%	82
	QD2	SE248520.005	%	60 - 130%	81
d8-toluene (Surrogate)	HA4_0.2-0.3	SE248520.001	%	60 - 130%	71
	HA1_0.2-0.3	SE248520.002	%	60 - 130%	72
	HA2_0.2-0.3	SE248520.003	%	60 - 130%	68
	QD1	SE248520.004	%	60 - 130%	84
	QD2	SE248520.005	%	60 - 130%	82
/olatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE248520.008	%	40 - 130%	107
d4-1,2-dichloroethane (Surrogate)	QR1	SE248520.008	%	60 - 130%	106
d8-toluene (Surrogate)	QR1	SE248520.008	%	40 - 130%	98

SE248520 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB281263.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil				Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB281397.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB281392.001		Alpha BHC	mg/kg	0.1	<0.1
		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Lindane (gamma BHC)	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		Endrin aldehyde	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endrin ketone	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	87
OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420

Sample Numb Parameter Units LB281392.001 Azinphos-methyl (Guthion) mg/kg Bromophos Ethyl mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg Diazinon (Dimpylate) mg/kg Dichlorvos mg/kg Dimethoate mg/kg Ethion mg/kg Fenitrothion mg/kg Malathion mg/kg Methidathion mg/kg Parathion-ethyl (Parathion) mg/kg

	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	95
		d14-p-terphenyl (Surrogate)	%	-	103
PAH (Polynuclear Aromatic H	lydrocarbons) in Soil			Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB281392.001		Naphthalene	 mg/kg	0.1	<0.1
		2-methylnaphthalene	 mg/kg	0.1	<0.1
		1-methylnaphthalene	 mg/kg	0.1	<0.1
		Acenaphthylene	 mg/kg	0.1	<0.1
		Acenaphthene	 mg/kg	0.1	<0.1
		Fluorene	 mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1

LOR

0.2

0.2

0.2

0.5

0.5

0.5

0.2

0.2

0.2

0.5

0.2

Result

< 0.2

<0.2

<0.2

< 0.5

<0.5

<0.5

<0.2

<0.2

<0.2

< 0.5

<0.2

SE248520 R1

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Meth	nod: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB281392.001		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
Surro	ogates	d5-nitrobenzene (Surrogate)	%	-	97
		2-fluorobiphenyl (Surrogate)	%	-	95
		d14-p-terphenyl (Surrogate)	%	-	103

PAH (Polynuclear Aromatic Hydrocarbons) in Water

	,				
Sample Number		Parameter	Units	LOR	Result
LB281260.001		Naphthalene	μg/L	0.1	<0.1
		2-methylnaphthalene	μg/L	0.1	<0.1
		1-methylnaphthalene	μg/L	0.1	<0.1
		Acenaphthylene	μg/L	0.1	<0.1
		Acenaphthene	μg/L	0.1	<0.1
		Fluorene	μg/L	0.1	<0.1
		Phenanthrene	μg/L	0.1	<0.1
		Anthracene	μg/L	0.1	<0.1
		Fluoranthene	μg/L	0.1	<0.1
		Pyrene	μg/L	0.1	<0.1
		Benzo(a)anthracene	μg/L	0.1	<0.1
		Chrysene	μg/L	0.1	<0.1
		Benzo(a)pyrene	μg/L	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
		Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1	
Sur	rogates	d5-nitrobenzene (Surrogate)	%	-	50
		2-fluorobiphenyl (Surrogate)	%	-	54
		d14-p-terphenyl (Surrogate)	%	-	74

Method: ME-(AU)-[ENV]AN420 PCBs in Soil Sample Numb Units LOR Result Parameter LB281392 001 Arochlor 1016 mg/kg 02 <0.2 Arochlor 1221 mg/kg 0.2 <0.2 Arochlor 1232 0.2 <0.2 mg/kg Arochlor 1242 mg/kg 0.2 <0.2 Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 0.2 <0.2 mg/kg Arochlor 1260 mg/kg 0.2 < 0.2 Arochlor 1262 mg/kg 0.2 <0.2 Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg 1 <1 Surrogates TCMX (Surrogate) % 87 -Total Cyanide in soil by Discrete Analyser Method: ME-(AU)-[ENV]AN077/AN287 Sample Number Result Parameter Units LOR LB281641.001 Total Cyanide mg/kg 0.5 <0.5

|--|--|--|

Total Phenolics in Soil			Meth	nod: ME-(AU)-[ENV]AN295
Sample Number	Parameter	Units	LOR	Result
LB281632.001	Total Phenois	mg/kg	0.5	<0.5

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES			Method: ME-(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR

SE248520 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

otal Recoverable Ele	ments in Soil/Waste Solids/Mate	rials by ICPOES (continued)		Method: ME-	(AU)-[ENV]AN040/A
Sample Number		Parameter	Units	LOR	Result
B281395.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
naa Matala (Diasah <i>u</i>	ed) in Water by ICDMP		inging		
-	ed) in Water by ICPMS				od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B281319.001		Arsenic	μg/L	1	<1
		Cadmium	μg/L	0.1	<0.1
		Chromium	μg/L	1	<1
		Copper	μg/L	1	<1
		Lead	μg/L	1	<1
		Nickel	μg/L	1	<1
		Zinc	μg/L	5	<5
RH (Total Recoverab	ole Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
3281392.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
H /Total Baseura	ble Hydrocarbons) in Water		iiig/rg		od: ME-(AU)-[ENV]A
•	ne Hydrocarbons) in water				
ample Number		Parameter	Units	LOR	Result
3281260.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
OC's in Soil				Meth	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B281393.001	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1
D201000.001	i uniguno	1,2-dichloropropane		0.1	<0.1
			mg/kg	0.1	<0.1
		cis-1,3-dichloropropene	mg/kg		
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
		Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		1,1-dichloroethene	mg/kg	0.1	<0.1
		lodomethane	mg/kg	5	<5
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
		Allyl chloride	mg/kg	0.1	<0.1
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane	mg/kg	0.1	<0.1
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane		0.1	<0.1
			mg/kg		
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane	mg/kg	0.1	<0.1
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trickless of an a (Trickless of a large TOE)	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene, TCE)		0.1	
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
					<0.1 <0.1

SE248520 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

le Number	d)	Davamatar			od: ME-(AU)-[ENV
ple Number		Parameter	Units	LOR	Result
393.001	Halogenated Aliphatics	1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		o-xylene	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate*	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	87
	Carrogatoc	d8-toluene (Surrogate)	%	_	81
		Bromofluorobenzene (Surrogate)	%	_	94
	Totals	Total Other Chlorinated Hydrocarbons VIC EPA*	/% mg/kg	1.8	<1.8
	10(0)5	Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total BTEX*		0.6	<0.6
	Tribalomotheres		mg/kg		
	Trihalomethanes	Chloroform (THM)	mg/kg	0.1	<0.1
		Bromodichloromethane (THM)	mg/kg	0.1	<0.1
		Dibromochloromethane (THM)	mg/kg	0.1	<0.1
		Bromoform (THM)	mg/kg	0.1	<0.1

Sample Number Units Parameter LOR Result LB281645.001 Monocyclic Aromatic Benzene µg/L 0.5 <0.5 Hydrocarbons Toluene 0.5 <0.5 µg/L Ethylbenzene 0.5 < 0.5 µg/L m/p-xylene µg/L 1 <1 0.5 <0.5 o-xylene µg/L Polycyclic VOCs Naphthalene (VOC)* 0.5 < 0.5 µg/L Surrogates d4-1,2-dichloroethane (Surrogate) % 102 d8-toluene (Surrogate) % -96 Bromofluorobenzene (Surrogate) % 105

SE248520 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN433

Volatile Petroleum Hydrocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433	
Sample Number		Parameter	Units	LOR	Result
LB281393.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1.2-dichloroethane (Surrogate)	%	-	87

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hyd	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB281645.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	102
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	105

DUPLICATES

Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Mercury (dissolved	lercury (dissolved) in Water							Perth)/AN312
Original	Duplicate	Parameter	Units	OR	Original	Duplicate	Criteria %	RPD %
SE248519.002	LB281263.014	Mercury	μg/L 0	.0001	<0.0001	<0.0001	200	195
SE248520.008	LB281263.018	Mercury	μg/L 0	.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Mercury in Soil					Met	nod: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units LC	R Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281397.014	Mercury	mg/kg 0.0	5 <0.05	<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281394.011	% Moisture	%w/w	1	9.3	8.5	41	9
SE248520.005	LB281394.022	% Moisture	%w/w	1	9.1	7.4	42	20
SE248520.006	LB281394.024	% Moisture	%w/w	1	<1.0	<1.0	200	0

Destisides in Coll

C Pesticides in S	oil						Met	hod: ME-(AU)-	(ENVJAN4	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE248500.002	LB281392.014		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0	
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Endosulfan	mg/kg	0.2	<0.1	<0.1	200	0	
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0	
			Dieldrin	mg/kg	0.2	<0.05	<0.05	200	0	
			Endrin	mg/kg	0.2	<0.1	<0.1	200	0	
			Beta Endosulfan	mg/kg	0.2	<0.1	<0.1	200	0	
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0	
		Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0		
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0		
				o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0	
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0	
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0	
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0	
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.12	30	1	
E248520.003	LB281392.025		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0	
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0	
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0	

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

OC Pesticides in S	oil (continued)						Meth	nod: ME-(AU)-	(ENV]AN420
Original	Duplicate		Parameter	Un	its LOF	Original	Duplicate	Criteria %	RPD %
SE248520.003	LB281392.025		p,p'-DDE	mg	'kg 0.1	<0.1	<0.1	200	0
			Dieldrin	mg	'kg 0.2	<0.2	<0.05	200	0
			Endrin	mg	'kg 0.2	<0.2	<0.1	200	0
			Beta Endosulfan	mg	'kg 0.2	<0.2	<0.1	200	0
			o,p'-DDD*	mg	'kg 0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg	'kg 0.1	<0.1	<0.1	200	0
		Endrin aldehyde	mg	'kg 0.1	<0.1	<0.1	200	0	
			Endosulfan sulphate	mg	'kg 0.1	<0.1	<0.1	200	0
			o,p'-DDT*	mg	'kg 0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg	'kg 0.1	<0.1	<0.1	200	0
			Endrin ketone	mg	'kg 0.1	<0.1	<0.1	200	0
			Methoxychlor	mg	'kg 0.1	<0.1	<0.1	200	0
			Mirex	mg	'kg 0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg	'kg 0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg	'kg 1	<1	<1	200	0
			Total OC VIC EPA	mg	'kg 1	<1	<1	200	0
	Su	irrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg	'kg -	0.12	0.13	30	4

OP Pesticides in S	oil						Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
SE248520.003	LB281392.025		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
	1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0	
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
	Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0	
	Fluorene	mg/kg	0.1	<0.1	<0.1	200	0	
		Phenanthrene	mg/kg	0.1	<0.1	0.1	150	1
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	0.1	0.2	103	37
		Pyrene	mg/kg	0.1	0.1	0.2	102	36
		Benzo(a)anthracene	ma/ka	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN420

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248500.002	LB281392.014		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
1240000.002	LB201002.014		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	185	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	198	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	167	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>173</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	173	0
					0.8	0.2	0.4	61	62 @
		Currenetee	Total PAH (18)	mg/kg					
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.48	0.49	30	1
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.44	0.45	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.47	0.48	30	1
SE248520.003	LB281392.025		Naphthalene	mg/kg	0.1	<0.1	<0.1	185	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	0.1	<0.1	135	9
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.1	200	9
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.49	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.45	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.48	30	1
CBs in Soil							Mett	od: ME-(AU)-	(ENV)AI
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
SE248520.003	LB281392.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<0.2	<0.2	200	0

Total Cyanide in soi	Fotal Cyanide in soil by Discrete Analyser						N077/AN287
Original	Duplicate	Parameter	Units LOR	Original	Duplicate	Criteria %	RPD %
SE248544.002	LB281641.017	Total Cyanide	mg/kg 0.5	24	20	32	19

Total Phenolics in So				
Original	Duplicate	Parameter	Units	LOR

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Phenolics in S	Soil (continued)					Meth	od: ME-(AU)-[ENVJAN295
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248436.002	LB281632.007	Total Phenols	mg/kg	0.5	<0.5	<0.5	200	0

Original			•				Method: ME		
	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE248448.017	LB281395.014		Arsenic, As	mg/kg	1	9	9	42	3
race Metals (Dissol Driginal SE248519.003 3E248562.001 RH (Total Recovera Driginal SE248500.002			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	12	12	34	3
			Copper, Cu	mg/kg	0.5	17	16	33	7
			Nickel, Ni	mg/kg	0.5	3.5	3.6	44	2
			Lead, Pb	mg/kg	1	13	13	38	2
			Zinc, Zn	mg/kg	2	19	18	41	5
race Metals (Dis	solved) in Water by IC	PMS					Meth	nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE248519.003	LB281319.014		Arsenic	µg/L	1	1	1	87	0
			Cadmium	µg/L	0.1	<0.1	<0.1	200	0
			Chromium	µg/L	1	1	1	101	3
			Copper	µg/L	1	<1	<1	169	0
			Lead	µg/L	1	<1	<1	200	0
			Nickel	μg/L	1	7	7	28	0
			Zinc	μg/L	5	14	14	51	2
SE248562.001	LB281319.018		Arsenic	μg/L	1	<1	<1	165	0
			Cadmium	μg/L	0.1	<0.1	<0.1	200	0
			Chromium	μg/L	1	1	1	100	2
			Copper	μg/L	1	2	2	81	2
			Lead	μg/L	1	<1	<1	200	0
			Nickel		1	1	1	84	0
			Zinc	μg/L μg/L	5	<5	<5	200	0
'BH (Total Basey	(orable Hydrocorbone)			μg/c	5	~5			
	Duplicate	111 3011	Parameter	Units	LOR	Original		nod: ME-(AU)- Criteria %	RPD
-	LB281392.014		TRH C10-C14		20	<20	<20	200	0
3E246300.002	LD201392.014			mg/kg				200	0
			TRH C15-C28	mg/kg	45	<45 <45	<45 <45	135	0
			TRH C29-C36	mg/kg	45				
			TBU 007.040						
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	100 110	<100 <110	<100 <110	200 200	0
			TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg	100 110 210	<100 <110 <210	<100 <110 <210	200 200 200	0 0 0
		TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg	100 110 210 25	<100 <110 <210 <25	<100 <110 <210 <25	200 200 200 200	0 0 0 0
		TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25	<100 <110 <210 <25 <25	<100 <110 <210 <25 <25	200 200 200 200 200 200	0 0 0 0
		TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90	<100 <110 <210 <25 <25 <90	<100 <110 <210 <25 <25 <90	200 200 200 200 200 200 200	0 0 0 0 0 0
		TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120	<100 <110 <210 <25 <25 <90 <120	<100 <110 <210 <25 <25 <90 <120	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90	<100 <110 <210 <25 <25 <90	<100 <110 <210 <25 <25 <90	200 200 200 200 200 200 200	0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120	<100 <110 <210 <25 <25 <90 <120	<100 <110 <210 <25 <25 <90 <120	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20	<100 <110 <210 <25 <25 <90 <120 <20	<100 <110 <210 <25 <25 <90 <120 <20	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20 45	<100 <110 <210 <25 <25 <90 <120 <20 <45	<100 <110 <210 <25 <25 <90 <120 <20 <45	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45 45	<100 <110 <220 <25 <25 <90 <120 <20 <45 <45 <45 <100	<100 <110 <220 <25 <25 <90 <120 <20 <45 <45 <100	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45 45 100 110	<100 <110 <220 <25 <90 <120 <20 <45 <45 <100 <110	<100 <110 <220 <25 <90 <120 <20 <45 <45 <100 <110	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025		TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45 100 110 210	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210	<100 <110 <220 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025		TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C10-C14 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 210 25 25 90 120 20 45 45 45 100 110 210 225	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25	<100 <110 <220 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE248520.003	LB281392.025		TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45 45 100 110 210 25 25	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	<100 <110 <220 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	LB281392.025	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45 100 110 210 25 25 90	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90	<100 <110 <220 <25 <25 <90 <120 <20 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov		TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 110 25 25 90 120 20 45 45 100 110 210 25 25 90	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	rerable Hydrocarbons)	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg </td <td>100 110 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 120</td> <td><100 <110 <210 <25 <25 <90 <120 <420 <45 <45 <100 <110 <210 <25 <25 <90 <120</td> <td><100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <</td> <td>200 200 200 200 200 200 200 200 200 200</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	100 110 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 120	<100 <110 <210 <25 <25 <90 <120 <420 <45 <45 <100 <110 <210 <25 <25 <90 <120	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov Original	rerable Hydrocarbons) Duplicate	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH C10-C14 TRH C10-C14 TRH C10-C36 TRH C10-C36 TRH C29-C36 TRH >C10-C16 TRH >C10-C14	mg/kg	100 110 210 25 25 90 120 20 45 45 45 45 100 110 210 25 25 90 120 120	<100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <210 <25 <25 <90 <120 <7120 <7120	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meth Duplicate <50	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov Original	rerable Hydrocarbons) Duplicate	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH C37-C40 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C15-C28	mg/kg mg/kg<	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 50 200	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <120 <720 <50 <200 <120	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Metr Duplicate <50 <200	200 200 200 200 200 200 200 200 200 200	00000000000000000000000000000000000000
RH (Total Recov Original	rerable Hydrocarbons) Duplicate	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH C10-C14 TRH C10-C14 TRH C28-C36 TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - C34 (F3) TRH >C10-C16 - C34 (F4)	mg/kg mg/kg<	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 200 200 200 200	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90 <120 <120 <720 <50 <200 <200 <200 <200 <200 <200 <20	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Metr Duplicate <50 <200	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T <mark>RH (Total Recov</mark> Original	rerable Hydrocarbons) Duplicate	TRH F Bands	TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH C37-C40 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C15-C28	mg/kg mg/kg<	100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 50 200	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <120 <720 <50 <200 <120	<100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Metr Duplicate <50 <200	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

) in Water (continue	·						-[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE248418.001	LB281260.028	TRH F Bands	TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	μg/L	500	<500	<500	200	0
SE248519.004	LB281260.029		TRH C10-C14	μg/L	50	<50	<50	200	0
			TRH C15-C28	µg/L	200	<200	<200	200	0
			TRH C29-C36	µg/L	200	<200	<200	200	0
			TRH C37-C40	µg/L	200	<200	<200	200	0
			TRH C10-C40	μg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	<500	200	0
'OC's in Soil							Meth	od: ME-(AU)	
					100	<u></u>			
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD
SE248448.017	LB281393.034	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	8.0	50	6
			d8-toluene (Surrogate)	mg/kg	-	7.8	8.3	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.8	50	2
		Totals	Total BTEX*	mg/kg	0.6	<0.3	<0.3	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE248520.003	LB281393.038	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	0
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	200	0
		·	Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	0
			Bromomethane	mg/kg	1	<1	<1	200	0
			Chloroethane	mg/kg	1	<1	<1	200	0
			Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
			1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			lodomethane	mg/kg	5	<5	<5	200	0
					0.5	<0.5	<0.5	200	0
			Dichloromethane (Methylene chloride)	mg/kg					
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD %
SE248520.003	LB281393.038	Halogenated	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	0
			o-xylene		0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			Isopropylbenzene (Cumene)	mg/kg				200	0
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1		
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	0
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	0
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	0
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	0
			Vinyl acetate*	mg/kg	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	0
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	7.5	50	1
		Ū.	d8-toluene (Surrogate)	mg/kg	-	6.8	6.4	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.7	7.5	50	2
		Totals	Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	200	0
		1 otalo	Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	200	0
			Total BTEX*		0.6	<0.6	<0.3	200	0
				mg/kg	3	<3.0		200	0
			Total Volatile Chlorinated Hydrocarbons*	mg/kg			<3		
			Total VOC*	mg/kg	24	<24	<24	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
		Trihalomethan	Chloroform (THM)	mg/kg	0.1	<0.1	<0.1	200	0
		es	Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromochloromethane (THM)	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	200	0
OCs in Water							Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
SE248514.001	LB281645.026	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	0.9	1.0	83	4
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
					0.5	<0.5	<0.5	200	0
		Balvovalia	o-xylene	μg/L					
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.7	9.6	30	11
			d8-toluene (Surrogate)	µg/L	-	9.9	9.5	30	4
			Bromofluorobenzene (Surrogate)	µg/L	-	10.9	10.3	30	6
		Totals	Total BTEX	µg/L	3	<3	<3	200	0
SE248514.002	LB281645.027	Monocyclic	Benzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	6.1	6.1	38	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/n-xv/lene	ug/l	1	<1	<1	200	0

µg/L

1

<1

<1

200

m/p-xylene

0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (co	ntinued)						Meth	nod: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.002	LB281645.027	Monocyclic	o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.5	9.7	30	8
			d8-toluene (Surrogate)	µg/L	-	9.8	9.6	30	2
			Bromofluorobenzene (Surrogate)	µg/L	-	10.7	10.5	30	2
		Totals	Total BTEX	µg/L	3	6	6	79	0
Volatile Petroleum	Hydrocarbons in So	il					Meth	nod: ME-(AU)-	(ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248448.017	LB281393.034		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	8.0	50	6
			d8-toluene (Surrogate)	mg/kg	-	7.8	8.3	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.8	50	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE248520.003	LB281393.035		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.6	7.5	50	1
			d8-toluene (Surrogate)	mg/kg	-	6.8	6.4	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.7	7.5	50	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
Volatile Petroleum	Hydrocarbons in Wa	ater					Meth	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.001	LB281645.026		TRH C6-C10	µg/L	50	<50	<50	189	0
			TRH C6-C9	μg/L	40	<50	<50	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	0.0	0.0	30	11
			d8-toluene (Surrogate)	µg/L	-	0.0	0.0	30	4
			Bromofluorobenzene (Surrogate)	µg/L	-	0.0	0.0	30	6
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	194	0
SE248514.002	LB281645.027		TRH C6-C10	µg/L	50	79	130	79	46
			TRH C6-C9	μg/L	40	56	86	86	42
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	0.0	0.0	30	8
			d8-toluene (Surrogate)	μg/L	-	0.0	0.0	30	2
			Bromofluorobenzene (Surrogate)	μg/L	-	0.0	0.0	30	2
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	73	120	82	49

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

cury in Soil				Me	ethod: ME-(AL	J)-[ENV]AN312
mple Number Parameter U	Units	LOR	Result	Expected	Criteria %	Recovery %
281397.002 Mercury mg	g/kg	0.05	0.23	0.2	80 - 120	114

OC Pesticides in S	oil					N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Delta BHC	mg/kg	0.1	0.1	0.2	60 - 140	74
		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	76
		Aldrin	mg/kg	0.1	0.1	0.2	60 - 140	74
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	74
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	72
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	67
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	83
OP Pesticides in S	oil					N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	83
		Diazinon (Dimpylate)	mg/kg	0.5	1.6	2	60 - 140	82
		Dichlorvos	mg/kg	0.5	1.4	2	60 - 140	71
		Ethion	mg/kg	0.2	1.7	2	60 - 140	83
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	101
PAH (Polynuclear /	Aromatic Hydroca	rbons) in Soil				N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Naphthalene	mg/kg	0.1	3.8	4	60 - 140	94
		Acenaphthylene	mg/kg	0.1	3.8	4	60 - 140	94
		Acenaphthene	mg/kg	0.1	4.1	4	60 - 140	102
		Phenanthrene	mg/kg	0.1	4.0	4	60 - 140	100
		Anthracene	mg/kg	0.1	3.9	4	60 - 140	97
		Fluoranthene	mg/kg	0.1	3.7	4	60 - 140	92
		Pyrene	mg/kg	0.1	4.3	4	60 - 140	107
		Benzo(a)pyrene	mg/kg	0.1	3.6	4	60 - 140	89
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	101
PAH (Polynuclear /	Aromatic Hydroca	rbons) in Water				I	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281260.002		Naphthalene	μg/L	0.1	37	40	60 - 140	94
		Acenaphthylene	μg/L	0.1	46	40	60 - 140	115
		Acenaphthene	μg/L	0.1	43	40	60 - 140	106
		Phenanthrene	μg/L	0.1	46	40	60 - 140	116
		Anthracene	µg/L	0.1	49	40	60 - 140	122
		Fluoranthene	µg/L	0.1	50	40	60 - 140	125
		Pyrene	μg/L	0.1	49	40	60 - 140	123
		Benzo(a)pyrene	μg/L	0.1	49	40	60 - 140	122
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.5	40 - 130	52
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	58
		d14-p-terphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	82
PCBs in Soil						N	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281392.002		Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	79

Total Cyanide in soil by Discrete Analyser

Total Cyanide in soil by Discrete Analyser Method: ME-(AU)-[ENV]ANG					/JAN077/AN287		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281641.002	Total Cyanide	mg/kg	0.5	<0.5	0.25	70 - 130	105

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Phenolics in Soil	Total Phenolics in Soil Method: ME-(AU)-[ENV]AN295							U)-[ENV]AN295
Sample Number	Parameter		Uni	s LOR	Result	Expected	Criteria %	Recovery %
LB281632.002	Total Phenols		mg/kg	0.5	20	20	80 - 120	100

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

		/aste Solids/Materials by ICPOES					: ME-(AU)-[ENV	-
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB281395.002		Arsenic, As	mg/kg	1	350	318.22	80 - 120	110
		Cadmium, Cd	mg/kg	0.3	3.6	4.81	70 - 130	75
		Chromium, Cr	mg/kg	0.5	41	38.31	80 - 120	106
		Copper, Cu	mg/kg	0.5	330	290	80 - 120	114
		Nickel, Ni	mg/kg	0.5	200	187	80 - 120	105
		Lead, Pb	mg/kg	1	96	89.9	80 - 120	107
		Zinc, Zn	mg/kg	2	290	273	80 - 120	107
race Metals (Diss	olved) in Water by	ICPMS				1	Method: ME-(Al	J)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
B281319.002		Arsenic	µg/L	1	22	20	80 - 120	109
		Cadmium	µg/L	0.1	21	20	80 - 120	106
		Chromium	µg/L	1	22	20	80 - 120	108
		Copper	µg/L	1	21	20	80 - 120	105
		Lead	µg/L	1	20	20	80 - 120	100
		Nickel	µg/L	1	22	20	80 - 120	110
		Zinc	µg/L	5	21	20	80 - 120	105
RH (Total Recove	rable Hydrocarbo	ns) in Soil					Method: ME-(Al	J)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
.B281392.002		TRH C10-C14	mg/kg	20	38	40	60 - 140	96
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	82
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	87
	TRH F Bands	TRH >C10-C16	mg/kg	25	38	40	60 - 140	95
	Hurr Danus	TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	86
RH (Total Recove	rable Hydrocarbo	ns) in Water				I	Method: ME-(Al	J)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result	Expected		Recover
_B281260.002		TRH C10-C14	μg/L	50	980	1200	60 - 140	82
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	97
		TRH C29-C36	μg/L	200	1200	1200	60 - 140	97
	TRH F Bands	TRH >C10-C16	µg/L	60	1000	1200	60 - 140	87
		TRH >C16-C34 (F3)	µg/L	500	1200	1200	60 - 140	99
		TRH >C34-C40 (F4)	µg/L	500	600	600	60 - 140	100
OC's in Soil						1	Method: ME-(Al	J)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
B281393.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	4.5	5	60 - 140	90
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	4.9	5	60 - 140	99
		Trichloroethene (Trichloroethylene, TCE)	mg/kg	0.1	5.0	5	60 - 140	101
	Halogenated	Chlorobenzene	mg/kg	0.1	5.6	5	60 - 140	113
	Monocyclic	Benzene	mg/kg	0.1	4.3	5	60 - 140	87
								90
	Aromatic	Toluene	mg/kg	0.1	4.5	5	60 - 140	90
				0.1	4.5	5	60 - 140 60 - 140	87
		Toluene Ethylbenzene	mg/kg					
		Toluene		0.1	4.3	5	60 - 140	87
		Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg	0.1 0.2	4.3 8.5	5 10	60 - 140 60 - 140	87 85
	Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1	4.3 8.5 4.3	5 10 5	60 - 140 60 - 140 60 - 140	87 85 86
	Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 -	4.3 8.5 4.3 8.9 7.1	5 10 5 10 10	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	87 85 86 89 71
	Aromatic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 - -	4.3 8.5 4.3 8.9 7.1 9.1	5 10 5 10 10 10 10	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130	87 85 86 89 71 91
	Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 -	4.3 8.5 4.3 8.9 7.1	5 10 5 10 10 10 5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140	87 85 86 89 71 91 108
	Aromatic Surrogates Trihalomethan	Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d&-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform (THM)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 - - 0.1	4.3 8.5 4.3 8.9 7.1 9.1 5.4	5 10 5 10 10 10 5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AL	87 85 86 89 71 91 108 J)-[ENV]AN
' <mark>OCs in Water</mark> Sample Number LB281645.002	Aromatic Surrogates Trihalomethan	Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 - -	4.3 8.5 4.3 8.9 7.1 9.1	5 10 5 10 10 10 5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140	87 85 86 89 71 91 108

0.5

0.5

1

µg/L

µg/L

µg/L

46

46

94

45.45

45.45

90.9

60 - 140

60 - 140

60 - 140

Aromatic

Toluene

Ethylbenzene

m/p-xylene

101

102

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OCs in Water (cor	ntinued)						Nethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Unit	s LOR	Result	Expected	Criteria %	Recovery %
LB281645.002	Monocyclic	o-xylene	μg/L	0.5	47	45.45	60 - 140	103
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	μg/L	-	11.1	10	70 - 130	111
		Bromofluorobenzene (Surrogate)	μg/L	-	10.0	10	70 - 130	100
/olatile Petroleum I	Hydrocarbons in §	Soil					Nethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Unit	s LOR	Result	Expected	Criteria %	Recovery 9
LB281393.002		TRH C6-C10	mg/kg	25	69	92.5	60 - 140	74
_		TRH C6-C9	mg/kg	20	59	80	60 - 140	74
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.9	10	70 - 130	89
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	43	62.5	60 - 140	68
/olatile Petroleum I	Hydrocarbons in \	Nater					Nethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Unit	s LOR	Result	Expected	Criteria %	Recovery 9
LB281645.002		TRH C6-C10	μg/L	50	800	946.63	60 - 140	85
		TRH C6-C9	μg/L	40	700	818.71	60 - 140	85
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	μg/L	-	11.1	10	70 - 130	111
		Bromofluorobenzene (Surrogate)	μg/L	-	10.0	10	70 - 130	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	530	639.67	60 - 140	82

MATRIX SPIKES

SE248520 R1

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312							
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248497.027	LB281263.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	90

Mercury in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248444.031	LB281397.004	Mercury	mg/kg	0.05	0.24	<0.05	0.2	108

OC Pesticides in Soil

	1001						INIOU	100. MIL-(AC)-[LINV]/1442
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	78
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	83
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	81
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1		_
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	80
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	78
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDD*		0.2	<0.2	<0.2	-	
			p,p'-DDD	mg/kg		<0.1	<0.1	-	-
			· · ·	mg/kg	0.1			-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg				-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1		-
			p,p'-DDT	mg/kg	0.1	0.1	<0.1	0.2	70
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	<1	-	-
			Total OC VIC EPA	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.14	-	89
P Pesticides in	n Soil						Met	hod: ME-(AL)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	<0.2	2	85
			Diazinon (Dimpylate)	mg/kg	0.5	1.7	<0.5	2	85
			Dichlorvos	mg/kg	0.5	1.5	<0.5	2	76
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	_
			Ethion	mg/kg	0.2	1.8	<0.2	2	89
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	
			Malathion	mg/kg	0.2	<0.2	<0.2	-	
			Methidathion	mg/kg	0.2	<0.2	<0.2	-	
			Parathion-ethyl (Parathion)	ma/ka	0.2	<0.2	<0.2	-	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
		Surrocates	Total OP Pesticides*	mg/kg	1.7	6.7	<1.7	-	-
		Surrogates	Total OP Pesticides* 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg	1.7 -	6.7 0.4	<1.7 0.5	-	- 88
			Total OP Pesticides*	mg/kg	1.7	6.7	<1.7 0.5 0.5	-	- 88 96
VH (Polynucles	ar Aromatic Hydrocarbo		Total OP Pesticides* 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg	1.7 -	6.7 0.4	<1.7 0.5 0.5	-	- 88

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C. Commis	Comple Number		Devementer	Units	LOR	Result	Onininal	Cmiller	Decourse
C Sample E248444.031	Sample Number LB281392.004		Parameter		0.1	3.6	Original	Spike	Recovery%
E248444.031	LB281392.004		Naphthalene	mg/kg	0.1	<0.1	<0.1	4	90
			2-methylnaphthalene	mg/kg		-	-	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	3.6	<0.1	4	90
			Acenaphthene	mg/kg	0.1	3.9	<0.1	4	97
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	3.8	<0.1	4	96
			Anthracene	mg/kg	0.1	3.7	<0.1	4	91
			Fluoranthene	mg/kg	0.1	3.5	<0.1	4	89
			Pyrene	mg/kg	0.1	3.9	<0.1	4	98
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.4	<0.1	4	86
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	_
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.4</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	3.4	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.5</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.5	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.6</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	3.6	<0.3	-	-
			Total PAH (18)	mg/kg	0.8	29	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	91
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	96
tal Phenolics i	n Soll						Meth	od: ME-(AL	J)-[ENV]AN29
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
E248373.021	LB281632.004		Total Phenols	mg/kg	0.5	22	0.5	20	107
E248436.001	LB281632.011		Total Phenols	mg/kg	0.5	21	<0.5	20	105

		Solids/Materials by ICPOES						JAN040/AN32
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281395.004	Arsenic, As	mg/kg	1	46	3	50	87
		Cadmium, Cd	mg/kg	0.3	44	<0.3	50	88
		Chromium, Cr	mg/kg	0.5	57	11	50	92
		Copper, Cu	mg/kg	0.5	57	12	50	91
		Nickel, Ni	mg/kg	0.5	48	3.4	50	89
		Lead, Pb	mg/kg	1	51	10	50	83
		Zinc, Zn	mg/kg	2	59	13	50	93
race Metals (Di	ssolved) in Water by ICP	MS				Met	hod: ME-(Al	J)-[ENV]AN3
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248497.027	LB281319.004	Arsenic	µg/L	1	22	<1	20	109
		Cadmium	µg/L	0.1	21	<0.1	20	106
		Chromium	µg/L	1	22	<1	20	108
		Copper	μg/L	1	21	<1	20	105
		Lead	μg/L	1	20	<1	20	101
		Nickel	μg/L	1	21	<1	20	107
		Zinc	μg/L	5	23	<5	20	96
RH (Total Reco	verable Hydrocarbons) ir	Soil				Meti	hod: ME-(Al	J)-[ENV]AN4
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004	TRH C10-C14	mg/kg	20	42	<20	40	105
		TRH C15-C28	mg/kg	45	<45	<45	40	100
		TRH C29-C36	mg/kg	45	55	<45	40	109
		TRH C37-C40	mg/kg	100	<100	<100	-	-
		TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
		TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F TRH >C10-C16	mg/kg	25	41	<25	40	103

mg/kg

25

41

<25

-

Bands

TRH >C10-C16 - Naphthalene (F2)

-

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

									J)-[ENV]AN40
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281392.004	TRH F	TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	111
		Bands	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
/OC's in Soil							Met	hod: ME-(AL	J)-[ENV]AN43
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281393.004	Monocyclic	Benzene	mg/kg	0.1	4.2	<0.1	5	83
		Aromatic	Toluene	mg/kg	0.1	4.4	<0.1	5	87
			Ethylbenzene	mg/kg	0.1	4.5	<0.1	5	90
			m/p-xylene	mg/kg	0.2	9.1	<0.2	10	91
			o-xylene	mg/kg	0.1	4.6	<0.1	5	92
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	7.8	10	79
			d8-toluene (Surrogate)	mg/kg	-	8.0	8.1	10	80
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.4	8.9	10	84
		Totals	Total BTEX*	mg/kg	0.6	27	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	14	<0.3	-	-
OCs in Water							Met	hod: ME-(AL	J)-[ENV]AN43
QC Sample	Sample Number	7	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248508.001	LB281645.028	Monocyclic	Benzene	µg/L	0.5	46	<0.5	45.45	101
		Aromatic	Toluene	μg/L	0.5	45	<0.5	45.45	100
			Ethylbenzene	μg/L	0.5	47	<0.5	45.45	104
			m/p-xylene	μg/L	1	92	<1	90.9	102
			o-xylene	μg/L	0.5	47	<0.5	45.45	102
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	47	<0.5	_	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.3	10.8	-	93
			d8-toluene (Surrogate)	μg/L	-	11.0	9.8	-	110
			Bromofluorobenzene (Surrogate)	µg/L	-	9.5	11.2	-	95
		Totals	Total BTEX	µg/L	3	280	<3	-	
/olatile Petroleu	n Hydrocarbons in S	Soil		10			Met	bod: ME-(Al	J)-[ENV]AN43
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248444.031	LB281393.005		TRH C6-C10	mg/kg	25	84	<25	92.5	90
32240444.031	LB201393.005		TRH C6-C9	mg/kg	20	74	<20	92.5 80	90
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	20	7.9	7.8	10	79
		Sunogates	d8-toluene (Surrogate)	mg/kg		8.0	8.1	10	80
			Bromofluorobenzene (Surrogate)	mg/kg		8.4	8.9	-	84
		VPH F	Benzene (F0)	mg/kg	0.1	4.2	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	57	<25	62.5	91
(alatila Defealaur	n I balancado en o to X			iiig/kg	25	51	-		-
	n Hydrocarbons in V								J)-[ENV]AN43
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE248508.001	LB281645.028		TRH C6-C10	µg/L	50	1000	<50	946.63	105
			TRH C6-C9	μg/L	40	860	<40	818.71	105
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	0.0	10.8	-	93
			d8-toluene (Surrogate)	μg/L	-	0.0	9.8	-	110
			Bromofluorobenzene (Surrogate)	μg/L	-	0.0	11.2	-	95
		VPH F	Benzene (F0)	µg/L	0.5		<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	720	<50	639.67	112

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Sergio Raposeira El AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E26047 19 Hope Street, Melrose Park	SGS Reference	SE248519 R0
Order Number	E26047	Date Received	31 May 2023
Samples	6	Date Reported	08 Jun 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extr	action Date	pH in water	3 items
		Turbidity	3 items
Dup	licate	VOCs in Water	1 item
		Volatile Petroleum Hydrocarbons in Water	1 item

Sample counts by matrix	6 Water	Type of documentation received	COC	
Date documentation received	1/6/2023@3:08pm	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	17.2C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes	. ,		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

Australia

04 0400 www.sgs.com.au 04 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

	alculation - Water							ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281217	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	01 Jun 2023
WBH2M	SE248519.002	LB281217	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	01 Jun 2023
WBH3M	SE248519.003	LB281217	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	01 Jun 2023
ercury (dissolved) in Wat	ər						Method: ME-(AU)-[ENV	AN311(Perth)/A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281263	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	02 Jun 2023
WBH2M	SE248519.002	LB281263	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	02 Jun 2023
WBH3M	SE248519.003	LB281263	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	02 Jun 2023
D1	SE248519.004	LB281263	31 May 2023	31 May 2023	28 Jun 2023	02 Jun 2023	28 Jun 2023	02 Jun 2023
tals in Water (Dissolved) by ICPOES						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281250	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	02 Jun 2023
WBH2M	SE248519.002	LB281250	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	02 Jun 2023
WBH3M	SE248519.003	LB281250	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	02 Jun 2023
H (Polynuclear Aromatic	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
WBH2M	SE248519.002	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
WBH3M	SE248519.003	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
D1	SE248519.004	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
in water							Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281217	31 May 2023	31 May 2023	01 Jun 2023	02 Jun 2023†	01 Jun 2023	01 Jun 2023
WBH2M	SE248519.002	LB281217	31 May 2023	31 May 2023	01 Jun 2023	02 Jun 2023†	01 Jun 2023	01 Jun 2023
WBH3M	SE248519.003	LB281217	31 May 2023	31 May 2023	01 Jun 2023	02 Jun 2023†	01 Jun 2023	01 Jun 2023
tal Cyanide in water by I)iscrete Analyser						Method: ME-(AU)-IFNVIAN077/A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281273	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	02 Jun 2023
WBH2M	SE248519.002	LB281273	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	02 Jun 2023
WBH3M	SE248519.003	LB281273	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	02 Jun 2023
tal Dissolved Solids (TD								ME-(AU)-[ENV]A
•	•		Compled	Dessived	Extraction Due	Eveneted		
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281425	31 May 2023	31 May 2023	07 Jun 2023	05 Jun 2023	07 Jun 2023	06 Jun 2023
WBH2M	SE248519.002 SE248519.003	LB281425 LB281425	31 May 2023	31 May 2023	07 Jun 2023	05 Jun 2023	07 Jun 2023	06 Jun 2023
WBH3M	SE240519.003	LD201425	31 May 2023	31 May 2023	07 Jun 2023	05 Jun 2023	07 Jun 2023	06 Jun 2023
tal Phenolics in Water								ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281341	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	05 Jun 2023
WBH2M	SE248519.002	LB281341	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	05 Jun 2023
WBH3M	SE248519.003	LB281341	31 May 2023	31 May 2023	14 Jun 2023	02 Jun 2023	14 Jun 2023	05 Jun 2023
ace Metals (Dissolved) ir	Water by ICPMS						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281319	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	05 Jun 2023
WBH2M	SE248519.002	LB281319	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	05 Jun 2023
WBH3M	SE248519.003	LB281319	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	05 Jun 2023
D1	SE248519.004	LB281319	31 May 2023	31 May 2023	27 Nov 2023	02 Jun 2023	27 Nov 2023	05 Jun 2023
H (Total Recoverable H	· ·							ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WBH1M	SE248519.001	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
WBH2M	SE248519.002	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
WBH3M	SE248519.003	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
D1	SE248519.004	LB281260	31 May 2023	31 May 2023	07 Jun 2023	02 Jun 2023	12 Jul 2023	08 Jun 2023
								ME-(AU)-[ENV]A

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Turbidity (continued)							Method: I	ME-(AU)-[ENV]AN11
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GWBH1M	SE248519.001	LB281242	31 May 2023	31 May 2023	01 Jun 2023	02 Jun 2023†	01 Jun 2023	01 Jun 2023
GWBH2M	SE248519.002	LB281242	31 May 2023	31 May 2023	01 Jun 2023	02 Jun 2023†	01 Jun 2023	01 Jun 2023
GWBH3M	SE248519.003	LB281242	31 May 2023	31 May 2023	01 Jun 2023	02 Jun 2023†	01 Jun 2023	01 Jun 2023
VOCs in Water							Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GWBH1M	SE248519.001	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
GWBH2M	SE248519.002	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
GWBH3M	SE248519.003	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
QD1	SE248519.004	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
Trip blank	SE248519.005	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
Trip Spike	SE248519.006	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
/olatile Petroleum Hydrod	carbons in Water						Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GWBH1M	SE248519.001	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
GWBH2M	SE248519.002	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
GWBH3M	SE248519.003	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
QD1	SE248519.004	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	06 Jun 2023
Trip blank	SE248519.005	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	08 Jun 2023
Trip Spike	SE248519.006	LB281443	31 May 2023	31 May 2023	14 Jun 2023	05 Jun 2023	14 Jun 2023	08 Jun 2023

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420 Parameter Criteria Recovery % Sample Num Units Sample Na 2-fluorobiphenvl (Surrogate) GWBH1M SE248519.001 % 40 - 130% 59 GWBH2M SE248519.002 40 - 130% 56 % GWBH3M SE248519.003 61 % 40 - 130% d14-p-terphenyl (Surrogate) GWBH1M SE248519.001 % 40 - 130% 93 GWBH2M SE248519.002 40 - 130% % 75 **GWBH3M** SE248519.003 40 - 130% 86 % d5-nitrobenzene (Surrogate) GWBH1M SE248519 001 % 40 - 130% 50 GWBH2M SE248519.002 40 - 130% % 54 GWBH3M SE248519.003 40 - 130% 57 % Method: MA-1523 Per- and Polyfluoroalkyl Substances (PEAS), in Aqueous Samples Parameter Sample Name Sample Number Units Criteria Recovery % (13C2 PFTeDA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 10 - 150% 98 GWBH2M SE248519.002 % 10 - 150% 134 **GWBH3M** SE248519.003 % 10 - 150% 82 (13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 93 GWBH2M SE248519.002 % 10 - 150% 77 **GWBH3M** SE248519.003 10 - 150% 86 % (13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 101 GWBH2M SE248519.002 % 10 - 150% 81 **GWBH3M** SE248519.003 10 - 150% 93 % 10 - 150% (13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 88 % GWBH2M SE248519.002 10 - 150% % 79 GWBH3M SE248519 003 % 10 - 150% 83 (13C2-PFDoA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 78 GWBH2M SE248519.002 % 10 - 150% 92 GWBH3M SE248519.003 % 10 - 150% 87 (13C2-PFHxDA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 87 GWBH2M SE248519.002 % 10 - 150% 120 **GWBH3M** SE248519.003 % 10 - 150% 62 (13C3-PFBS) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 95 GWBH2M SE248519.002 % 10 - 150% 91 **GWBH3M** SE248519.003 10 - 150% 91 % 10 - 150% (13C3-PFHxS) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 92 GWBH2M SE248519.002 % 10 - 150% 96 **GWBH3M** SE248519.003 % 10 - 150% 92 (13C4_PFOA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 88 10 - 150% % GWBH2M SE248519.002 % 10 - 150% 96 GWBH3M SE248519.003 % 10 - 150% 86 (13C4-PFBA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 91 GWBH2M SE248519.002 % 10 - 150% 92 **GWBH3M** SE248519.003 % 10 - 150% 93 (13C4-PFHpA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 10 - 150% 93 % GWBH2M SE248519.002 % 10 - 150% 91 **GWBH3M** SE248519.003 10 - 150% 89 % (13C5-PFHxA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 10 - 150% 91 % GWBH2M SE248519.002 % 10 - 150% 94 GWBH3M SE248519.003 % 10 - 150% 84 10 - 150% (13C5-PFPeA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 83 % GWBH2M SE248519.002 % 10 - 150% 87 **GWBH3M** SE248519.003 10 - 150% 85 % (13C6-PFDA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 80 GWBH2M SE248519.002 % 10 - 150% 99 GWBH3M SE248519.003 % 10 - 150% 93 (13C7-PFUdA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 % 10 - 150% 73 GWBH2M SE248519.002 % 10 - 150% 84 **GWBH3M** SE248519.003 10 - 150% 83 % (13C8-PFOS) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 10 - 150% 76 % GWBH2M SE248519.002 % 10 - 150% 87 **GWBH3M** SE248519.003 10 - 150% 93 % (13C8-PFOSA) Isotopically Labelled Internal Recovery Standard GWBH1M SE248519.001 10 - 150% 83

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples (contin	nued)				Method: MA-
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
(13C8-PFOSA) Isotopically Labelled Internal Recovery Standard	GWBH2M	SE248519.002	%	10 - 150%	79
	GWBH3M	SE248519.003	%	10 - 150%	97
(13C9-PFNA) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	88
	GWBH2M	SE248519.002	%	10 - 150%	100
	GWBH3M	SE248519.003	%	10 - 150%	85
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	76
	GWBH2M	SE248519.002	%	10 - 150%	76
	GWBH3M	SE248519.003	%	10 - 150%	65
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	88
	GWBH2M	SE248519.002	%	10 - 150%	81
	GWBH3M	SE248519.003	%	10 - 150%	92
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	83
	GWBH2M	SE248519.002	%	10 - 150%	79
	GWBH3M	SE248519.003	%	10 - 150%	65
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	69
	GWBH2M	SE248519.002	%	10 - 150%	74
	GWBH3M	SE248519.003	%	10 - 150%	90
D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	84
	GWBH2M	SE248519.002	%	10 - 150%	65
	GWBH3M	SE248519.003	%	10 - 150%	82
D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard	GWBH1M	SE248519.001	%	10 - 150%	82
	GWBH2M	SE248519.002	%	10 - 150%	71
	GWBH3M	SE248519.003	%	10 - 150%	88
OCs in Water					E-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	GWBH1M	SE248519.001	%	40 - 130%	105
	GWBH2M	SE248519.002	%	40 - 130%	106
	GWBH3M	SE248519.003	%	40 - 130%	75
	QD1	SE248519.004	%	40 - 130%	104
	Trip blank	SE248519.005	%	40 - 130%	95
	Trip Spike	SE248519.006	%	40 - 130%	120
d4-1,2-dichloroethane (Surrogate)	GWBH1M	SE248519.001	%	40 - 130%	97
	GWBH2M	SE248519.002	%	40 - 130%	92
	GWBH3M	SE248519.003	%	40 - 130%	97
	QD1	SE248519.004	%	40 - 130%	94
	Trip blank	SE248519.005	%	40 - 130%	102
	прылк	32240313.005	/0	40 - 130%	102
	Trip Spike	SE248519.006	%	40 - 130%	104
18-toluene (Surrogate)					
18-toluene (Surrogate)	Trip Spike	SE248519.006	%	40 - 130%	104
18-toluene (Surrogate)	Trip Spike GWBH1M	SE248519.006 SE248519.001	%	40 - 130% 40 - 130%	104 75
18-toluene (Surrogate)	Trip Spike GWBH1M GWBH2M	SE248519.006 SE248519.001 SE248519.002	% % %	40 - 130% 40 - 130% 40 - 130%	104 75 77
18-toluene (Surrogate)	Trip Spike GWBH1M GWBH2M GWBH3M	SE248519.006 SE248519.001 SE248519.002 SE248519.003	% % %	40 - 130% 40 - 130% 40 - 130% 40 - 130%	104 75 77 105
18-toluene (Surrogate)	Trip Spike GWBH1M GWBH2M GWBH3M QD1	SE248519.006 SE248519.001 SE248519.002 SE248519.003 SE248519.004	% % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130%	104 75 77 105 76
	Trip Spike GWBH1M GWBH2M GWBH3M QD1 Trip blank	SE248519.006 SE248519.001 SE248519.002 SE248519.003 SE248519.004 SE248519.005	% % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130%	104 75 77 105 76 75 83
platile Petroleum Hydrocarbons in Water	Trip Spike GWBH1M GWBH2M GWBH3M QD1 Trip blank	SE248519.006 SE248519.001 SE248519.002 SE248519.003 SE248519.004 SE248519.005	% % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130%	104 75 77 105 76 75
d8-toluene (Surrogate) Diatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate)	Trip Spike GWBH1M GWBH2M GWBH3M QD1 Trip blank Trip Spike	SE248519.006 SE248519.001 SE248519.002 SE248519.003 SE248519.004 SE248519.005 SE248519.006	% % % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: M	104 75 77 105 76 75 83 E-(AU)-[ENV]A
p <mark>latile Petroleum Hydrocarbons in Water</mark> Parameter	Trip Spike GWBH1M GWBH2M GWBH3M QD1 Trip blank Trip Spike Sample Name	SE248519.006 SE248519.001 SE248519.002 SE248519.003 SE248519.004 SE248519.005 SE248519.006	% % % % % % Units	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: M Criteria	104 75 77 105 76 75 83 E-(AU)-[ENV]A Recovery

			40 - 130%	100
GWBH3M	SE248519.003	%	40 - 130%	75
QD1	SE248519.004	%	40 - 130%	104
GWBH1M	SE248519.001	%	60 - 130%	97
GWBH2M	SE248519.002	%	60 - 130%	92
GWBH3M	SE248519.003	%	60 - 130%	97
QD1	SE248519.004	%	60 - 130%	94
GWBH1M	SE248519.001	%	40 - 130%	75
GWBH2M	SE248519.002	%	40 - 130%	77
GWBH3M	SE248519.003	%	40 - 130%	105
QD1	SE248519.004	%	40 - 130%	76
	QD1 GWBH1M GWBH2M GWBH3M QD1 GWBH1M GWBH2M GWBH3M	QD1 SE248519.004 GWBH1M SE248519.001 GWBH2M SE248519.002 GWBH3M SE248519.003 QD1 SE248519.004 GWBH1M SE248519.004 GWBH3M SE248519.004 GWBH1M SE248519.001 GWBH2M SE248519.002 GWBH3M SE248519.003	QD1 SE248519.004 % GWBH1M SE248519.001 % GWBH2M SE248519.002 % GWBH3M SE248519.003 % QD1 SE248519.004 % GWBH1M SE248519.004 % GWBH1M SE248519.001 % GWBH2M SE248519.001 % GWBH2M SE248519.002 % GWBH3M SE248519.002 %	QD1 SE248519.004 % 40 - 130% GWBH1M SE248519.001 % 60 - 130% GWBH2M SE248519.002 % 60 - 130% GWBH3M SE248519.003 % 60 - 130% QD1 SE248519.004 % 60 - 130% QD1 SE248519.004 % 60 - 130% GWBH1M SE248519.001 % 40 - 130% GWBH2M SE248519.002 % 40 - 130% GWBH3M SE248519.003 % 40 - 130%

SE248519 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106						
Sample Number	Parameter	Units	LOR	Result		
LB281217.001	Conductivity @ 25 C	μS/cm	2	<2		

Mercury (dissolved) in Water

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB281263.001	Mercury	mg/L	0.0001	<0.0001

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved) by ICPOES			Meth	od: ME-(AU)-[ENV]AN320	
Sample Number	Parameter		Units	LOR	Result
LB281250.001	Calcium, Ca		mg/L	0.2	<0.2
	Magnesium, Mg		mg/L	0.1	<0.1

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbons) in Wa	iter		Meth	od: ME-(AU)-[ENV]AN42(
Sample Number	Parameter	Units	LOR	Result
LB281260.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	µg/L	0.1	<0.1
	Phenanthrene	µg/L	0.1	<0.1
	Anthracene	µg/L	0.1	<0.1
	Fluoranthene	µg/L	0.1	<0.1
	Pyrene	µg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(b&j&k)fluoranthene	μg/L	0.2	<0.2
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	50
	2-fluorobiphenyl (Surrogate)	%	-	54
	d14-p-terphenyl (Surrogate)	%	-	74
Total Cyanide in water by Discrete Analyser			Method: ME-	(AU)-[ENV]AN077/AN28
Sample Number	Parameter	Units	LOR	Result
LB281273.001	Total Cyanide	mg/L	0.004	<0.004

Total Dissolved Solids (TDS) in water			Meth	od: ME-(AU)-[ENV]AN113
Sample Number	Parameter	Units	LOR	Result
LB281425.001	Total Dissolved Solids Dried at 175-185°C	mg/L	10	<10

Total Phenolics in Water

Sample Number	Parameter	Units	LOR	Result
LB281341.001	Total Phenols	mg/L	0.05	<0.05

Trace Metals (Dissolved) in Water by ICF	PMS		Meth	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB281319.001	Aluminium	μg/L	5	<5
	Arsenic	μg/L	1	<1
	Cadmium	μg/L	0.1	<0.1
	Chromium	μg/L	1	<1
	Copper	µg/L	1	<1

Method: ME-(AU)-[ENV]AN295

SE248519 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Dissolved) in Water by ICPMS (continued)

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB281319.001	Lead	 µg/L	1	<1
	Nickel	 µg/L	1	<1
	Zinc	µg/L	5	<5
TRH (Total Recoverable Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result
LB281260.001	TRH C10-C14	µg/L	50	<50
	TRH C15-C28	µg/L	200	<200
	TRH C29-C36	 µg/L	200	<200
	TRH C37-C40	µg/L	200	<200
Turbidity			Meth	od: ME-(AU)-[ENV]AN119
Sample Number	Parameter	Units	LOR	Result
LB281242.001	Turbidity	NTU	0.5	<0.5

Cs in Water					od: ME-(AU)-[EN\
ample Number		Parameter	Units	LOR	Result
3281443.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		1,1-dichloroethene	μg/L	0.5	<0.5
		lodomethane	μg/L	5	<5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	µg/L	0.5	<0.5
		cis-1,2-dichloroethene	µg/L	0.5	<0.5
		Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	μg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	µg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5
		1,2,3-trichloropropane	µg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	µg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	µg/L	0.5	<0.5
		1,3-dichlorobenzene	µg/L	0.5	<0.5
		1,4-dichlorobenzene	µg/L	0.3	<0.3
		1,2-dichlorobenzene	µg/L	0.5	<0.5
		1,2,4-trichlorobenzene	µg/L	0.5	<0.5
		1,2,3-trichlorobenzene	µg/L	0.5	<0.5

SE248519 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continu	ued)			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB281443.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		o-xylene	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	μg/L	2	<2
		Vinyl acetate*	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	µg/L	5	<5
	Polycyclic VOCs	Naphthalene (VOC)*	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	93
		d8-toluene (Surrogate)	%	-	87
		Bromofluorobenzene (Surrogate)	%	-	98
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
olatile Petroleum Hyd	rocarbons in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B281443.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	93
		d8-toluene (Surrogate)	%	-	87
		Bromofluorobenzene (Surrogate)	%	_	98

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]A					(ENVJAN106			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248513.001	LB281217.008	Conductivity @ 25 C	µS/cm	2	30000	30000	15	2
SE248519.002	LB281217.012	Conductivity @ 25 C	µS/cm	2	2900	2800	15	4

rcurv (dissolved) in Water

Mercury (dissolved) in Water				Metho	d: ME-(AU)-[I	ENVJAN311(P	erth)/AN312	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.002	LB281263.014	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	195
SE248520.008	LB281263.018	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[EN					ENVJAN320			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.003	LB281250.009	Calcium, Ca	mg/L	0.2	1.1	1.1	34	2
		Magnesium, Mg	mg/L	0.1	2.5	2.6	19	1

pH in water

pH in water Method: ME-(AU)-[ENV]/							
Original	Duplicate	Parameter	Units LC	R Original	Duplicate	Criteria %	RPD %
SE248513.001	LB281217.008	pH**	pH Units 0.	1 6.6	6.7	17	0

Total Dissolved Solids (TDS) in water

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113								
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248539.002	LB281425.013	Total Dissolved Solids Dried at 175-185°C	mg/L	10	930	960	16	4
SE248560.001	LB281425.024	Total Dissolved Solids Dried at 175-185°C	mg/L	10	2800	2800	15	1

Total Phenolics in Water

Total Phenolics in Water Method: ME-(AU)-[ENV]AN2								
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.003	LB281341.014	Total Phenols	mg/L	0.05	<0.05	<0.05	200	0
SE248539.008	LB281341.023	Total Phenols	mg/L	0.05	<0.05	<0.05	200	0

Trace Metals (Dissolved) in Water by ICPMS

TRH F Bands

TRH >C10-C16

TRH >C10-C16 - Naphthalene (F2)

Trace Metals (Dis	solved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN31
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.003	LB281319.014	Aluminium	µg/L	5	69	70	22	1
		Arsenic	µg/L	1	1	1	87	0
		Cadmium	μg/L	0.1	<0.1	<0.1	200	0
		Chromium	μg/L	1	1	1	101	3
		Copper	μg/L	1	<1	<1	169	0
		Lead	μg/L	1	<1	<1	200	0
		Nickel	µg/L	1	7	7	28	0
		Zinc	µg/L	5	14	14	51	2
SE248562.001	LB281319.018	Aluminium	µg/L	5	57	69	23	18
		Arsenic	µg/L	1	<1	<1	165	0
		Cadmium	µg/L	0.1	<0.1	<0.1	200	0
		Chromium	µg/L	1	1	1	100	2
		Copper	µg/L	1	2	2	81	2
		Lead	µg/L	1	<1	<1	200	0
		Nickel	µg/L	1	1	1	84	0
		Zinc	µg/L	5	<5	<5	200	0
TRH (Total Recov	rerable Hydrocarbons) in Water					Meth	od: ME-(AU)-	ENVJAN40
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248418.001	LB281260.028	TRH C10-C14	µg/L	50	<0.05	<0.05	200	0
		TRH C15-C28	µg/L	200	<0.2	<0.2	200	0
		TRH C29-C36	µg/L	200	<0.2	<0.2	200	0
		TRH C37-C40	µg/L	200	<200	<200	200	0
		TRH C10-C40	μg/L	320	<0.32	<0.32	200	0

0

0

60

60

µg/L

µg/L

<0.06

<0.06

<0.06

<0.06

200

200

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

FRH (Total Recov	erable Hydrocarbons) in Water (continue	d)				Meth	od: ME-(AU)-	ENVJAN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248418.001	LB281260.028	TRH F Bands	TRH >C16-C34 (F3)	μg/L	500	<0.5	<0.5	200	0
			TRH >C34-C40 (F4)	μg/L	500	<0.5	<0.5	200	0
SE248519.004	LB281260.029		TRH C10-C14	μg/L	50	<50	<50	200	0
			TRH C15-C28	µg/L	200	<200	<200	200	0
			TRH C29-C36	µg/L	200	<200	<200	200	0
			TRH C37-C40	µg/L	200	<200	<200	200	0
			TRH C10-C40	µg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	<500	200	0
urbidity							Meth	od: ME-(AU)-	(ENVJAN1
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248506.001	LB281242.006		Turbidity	NTU	0.5	370	360	15	0

VOCs in Water

VOCs in Water							Meth	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.002	LB281443.032	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			1,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			cis-1,3-dichloropropene	μg/L	0.5	<0.5	0	200	0
			trans-1,3-dichloropropene	μg/L	0.5	<0.5	0	200	0
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	0.0089995364	200	0
		Aliphatics	Chloromethane	μg/L	5	<5	0.2222442566	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0.0155165099	200	0
			Bromomethane	µg/L	10	<10	0.3035374770	200	0
			Chloroethane	µg/L	5	<5	0.0231477173	200	0
			Trichlorofluoromethane	µg/L	1	<1	0.0024099484	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	0.0088442769	200	0
			lodomethane	µg/L	5	<5	0.0936222346	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	<5	0	200	0
			Allyl chloride	µg/L	2	<2	0.0393030392	200	0
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0.0089145300	200	0
			1,1-dichloroethane	μg/L	0.5	<0.5	0	200	0
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	0.0027927639	200	0
			Bromochloromethane	µg/L	0.5	<0.5	0.0516539118	200	0
			1,2-dichloroethane	µg/L	0.5	<0.5	0.0199763593	200	0
			1,1,1-trichloroethane	µg/L	0.5	<0.5	0	200	0
			1,1-dichloropropene	µg/L	0.5	<0.5	0.0050274469	200	0
			Carbon tetrachloride	µg/L	0.5	<0.5	0	200	0
			Dibromomethane	µg/L	0.5	<0.5	0.0084746159	200	0
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	0.0091191474	200	0
			1,1,2-trichloroethane	µg/L	0.5	<0.5	0	200	0
			1,3-dichloropropane	µg/L	0.5	<0.5	0.0160532310	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	0	200	0
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	0
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	0
			1,2,3-trichloropropane	µg/L	0.5	<0.5	0.0186628620	200	0
			trans-1,4-dichloro-2-butene	µg/L	1	<1	0	200	0
			1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	0	200	0
			Hexachlorobutadiene	μg/L	0.5	<0.5	0.1573581739	200	0
		Halogenated	Chlorobenzene	μg/L	0.5	<0.5	0.0194496598	200	0
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	0	200	0
			2-chlorotoluene	μg/L	0.5	<0.5	0.0196366428		0
			4-chlorotoluene	μg/L	0.5	<0.5	0.0520684957	200	0
			1,3-dichlorobenzene	μg/L	0.5	<0.5	0.0788369591	200	0
			1,4-dichlorobenzene	μg/L	0.3	<0.3	0.0749752638	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	0.0498436584	200	0
			1,2 01011010001120110	P9'-	0.0	-0.0	3.3400400004	200	v

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Method: ME-(AU)-[ENV]AN433 VOCs in Water (continued) Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR SE248519.002 LB281443.032 1,2,4-trichlorobenzene 0.0862681254 200 Halogenated 0.5 <0.5 µg/L 0 Aromatics 1.2.3-trichlorobenzene µg/L 0.5 < 0.5 0.1109669176 200 0 0.5 <0.5 0.1430023057 0 Monocyclic Benzene µg/L 200 Aromatic Toluene 0.5 <0.5 0.0599720060 200 0 µg/L Ethylbenzene µg/L 0.5 <0.5 0 200 0 m/p-xylene µg/L 1 <1 0.0506965142 200 0 Styrene (Vinyl benzene) 0.5 <0.5 0.0155062539 0 200 ua/L o-xylene µg/L 0.5 < 0.5 0.0196337339 200 0 0.5 0.0154372857 0 Isopropylbenzene (Cumene) µg/L <0.5 200 n-propylbenzene 0.5 <0.5 0.0023440881 200 0 µg/L 1,3,5-trimethylbenzene 0.5 <0.5 0.0210036899 200 0 µg/L tert-butylbenzene 0.5 <0.5 0.0357248922 200 0 µg/L 1.2.4-trimethylbenzene < 0.5 0.0285340907 200 0 µg/L 0.5 sec-butylbenzene 0.5 < 0.5 0 200 0 µg/L p-isopropyltoluene 0.0323130220 0.5 <0.5 200 0 µg/L 0.0372938309 n-butylbenzene 0.5 <0.5 200 0 µg/L Nitrogenous Acrylonitrile µg/L 0.5 < 0.5 0.0619069381 200 0 Compounds 100 <100 0.1455301178 2-nitropropane µg/L 200 0 Oxygenated 3.5419120889 Acetone (2-propanone) 10 <10 200 0 µg/L Compounds MtBE (Methyl-tert-butyl ether) µg/L 2 <2 0.0037179978 200 0 10 <10 0.0232176146 0 Vinyl acetate* µg/L 200 MEK (2-butanone) 10 <10 0 200 0 ua/L MIBK (4-methyl-2-pentanone) 5 <5 0.0545410764 200 0 µg/L 2-hexanone (MBK) µg/L 5 <5 0 200 0 Naphthalene (VOC)* 0.1219442078 Polycyclic 0.5 <0.5 200 0 µg/L Sulphonated Carbon disulfide µg/L 2 <2 0 0740660368 200 0 9.6449562319 Surrogates d4-1,2-dichloroethane (Surrogate) 9.2 30 5 µg/L d8-toluene (Surrogate) 7.7 7.4396549730 µg/L 30 4 Bromofluorobenzene (Surrogate) 11 8.3 30 25 µg/L Totals Total BTEX µg/L 3 <3 0 200 0 34.3740670070 Total VOC µg/L 10 31 60 9 Trihalomethan Chloroform (THM) µg/L 0.5 28 30,9378802814 32 10 0.5 3.1273968385 47 es Bromodichloromethane (THM) µg/L 2.7 14 0.4846819775 Dibromochloromethane (THM) µg/L 0.5 0.6 122 19 Bromoform (THM) 0.5 <0.5 0 0222268737 200 0 µg/L SE248596.004 LB281443.024 <0.5 200 Monocyclic Benzene µg/L 0.5 <0.5 0 Aromatic Toluene 0.5 <0.5 <0.5 200 0 µg/L Ethylbenzene µg/L 0.5 <0.5 <0.5 200 0 <1 <1 200 0 m/p-xylene µg/L 1 o-xylene µg/L 0.5 <0.5 <0.5 200 0 Polycyclic Naphthalene (VOC)* 0.5 <0.5 <0.5 200 0 µg/L Surrogates d4-1,2-dichloroethane (Surrogate) µg/L 9.9 9.6 30 3 d8-toluene (Surrogate) µg/L 7.2 12.3 30 53 ① Bromofluorobenzene (Surrogate) µg/L 10.0 10.0 30 0 Totals Total BTEX 3 <3 <3 200 0 µg/L Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Units LOR Original Duplicate Criteria % RPD % Original Duplicate Parameter SE248519.002 I B281443 030 TRH C6-C10 50 <50 <50 200 µg/L 0 TRH C6-C9 µg/L 40 <40 <40 200 0

			TRH 00-09	µg/L	40	N40	~ 40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.2	9.6	30	5
			d8-toluene (Surrogate)	μg/L	-	7.7	7.4	30	4
			Bromofluorobenzene (Surrogate)	μg/L	-	11	8.3	30	25
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	200	0
SE248596.004	LB281443.024		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.9	9.6	30	3
			d8-toluene (Surrogate)	µg/L	-	7.2	12.3	30	53 ①
			Bromofluorobenzene (Surrogate)	µg/L	-	10.0	10.0	30	0
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water (continued) Method: ME-(AU)-[ENV]AN4:									ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248596.004	LB281443.024	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN10							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281217.002	Conductivity @ 25 C	μS/cm	2	300	303	90 - 110	100

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281250.002	Calcium, Ca	mg/L	0.2	47	50.5	80 - 120	94
	Magnesium, Mg	mg/L	0.1	52	50.5	80 - 120	103

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear A	PAH (Polynuclear Aromatic Hydrocarbons) in Water								U)-[ENV]AN420
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB281260.002		Naphthalene		µg/L	0.1	37	40	60 - 140	94
		Acenaphthylene		µg/L	0.1	46	40	60 - 140	115
		Acenaphthene		µg/L	0.1	43	40	60 - 140	106
		Phenanthrene		µg/L	0.1	46	40	60 - 140	116
		Anthracene		µg/L	0.1	49	40	60 - 140	122
		Fluoranthene		µg/L	0.1	50	40	60 - 140	125
		Pyrene		µg/L	0.1	49	40	60 - 140	123
		Benzo(a)pyrene		µg/L	0.1	49	40	60 - 140	122
	Surrogates	d5-nitrobenzene (Surrogate)		µg/L	-	0.26	0.5	40 - 130	52
		2-fluorobiphenyl (Surrogate)		µg/L	-	0.29	0.5	40 - 130	58
		d14-p-terphenyl (Surrogate)		µg/L	-	0.41	0.5	40 - 130	82
pH in water							N	Nethod: ME-(A	U)-[ENV]AN101
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB281217.003		pH**		pH Units	0.1	7.4	7.415	98 - 102	99

tal Cyanida in water by Discrete Analyser

Total Cyanide in water by Discrete Analyser Method: ME-(AU)-[ENV]AN077/AN							VJAN077/AN287
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281273.002	Total Cyanide	mg/L	0.004	0.025	0.025	80 - 120	102

Total Phenolics in Water

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281341.002	Total Phenols	mg/L	0.05	0.20	0.2	80 - 120	98

Trace Metals (Dissolved) in Water by ICPMS

Tace Metals (Dissolved) III wa							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B281319.002	Aluminium	μg/L	5	21	20	80 - 120	106
	Arsenic	μg/L	1	22	20	80 - 120	109
	Cadmium	μg/L	0.1	21	20	80 - 120	106
	Chromium	μg/L	1	22	20	80 - 120	108
	Copper	μg/L	1	21	20	80 - 120	105
	Lead	μg/L	1	20	20	80 - 120	100
	Nickel	μg/L	1	22	20	80 - 120	110
	Zinc	µg/L	5	21	20	80 - 120	105
RH (Total Recoverable Hydro	arbons) in Water				N	lethod: ME-(A	U)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B281260.002	TRH C10-C14	μg/L	50	980	1200	60 - 140	82
	TRH C15-C28	µg/L	200	1200	1200	60 - 140	97
	TRH C29-C36	µg/L	200	1200	1200	60 - 140	97
TRH F Ban	is TRH >C10-C16	µg/L	60	1000	1200	60 - 140	87
	TRH >C16-C34 (F3)	µg/L	500	1200	1200	60 - 140	99
	TRH >C34-C40 (F4)	μg/L	500	600	600	60 - 140	100
OCs in Water					N	lethod: ME-(A	U)-[ENV]AN
Sample Number	Parameter	Units	LOR				

Sample Number	Parameter	Units	LOR

8/6/2023

Method: ME-(AU)-[ENV]AN295

Method: ME-(AU)-IENVIAN318

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281443.002	Halogenated	1,1-dichloroethene	µg/L	0.5	48	45.45	60 - 140	106
	Aliphatics	1,2-dichloroethane	µg/L	0.5	50	45.45	60 - 140	110
		Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	50	45.45	60 - 140	111
	Halogenated	Chlorobenzene	µg/L	0.5	61	45.45	60 - 140	134
	Monocyclic	Benzene	µg/L	0.5	47	45.45	60 - 140	104
	Aromatic	Toluene	µg/L	0.5	47	45.45	60 - 140	103
		Ethylbenzene	µg/L	0.5	62	45.45	60 - 140	135
		m/p-xylene	µg/L	1	95	90.9	60 - 140	104
		o-xylene	µg/L	0.5	46	45.45	60 - 140	102
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.4	10	60 - 140	94
		d8-toluene (Surrogate)	µg/L	-	12	10	70 - 130	123
		Bromofluorobenzene (Surrogate)	µg/L	-	9.4	10	70 - 130	94
	Trihalomethan	Chloroform (THM)	μg/L	0.5	56	45.45	60 - 140	123
olatile Petroleum I	Hydrocarbons in V	Vater				N	Nethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B281443.002		TRH C6-C10	µg/L	50	970	946.63	60 - 140	102
		TRH C6-C9	µg/L	40	830	818.71	60 - 140	102
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.4	10	60 - 140	94
		d8-toluene (Surrogate)	µg/L	-	12	10	70 - 130	123
		Bromofluorobenzene (Surrogate)	µg/L	-	9.4	10	70 - 130	94
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	690	639.67	60 - 140	107

MATRIX SPIKES

SE248519 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	ed) in Water				Met	hod: ME-(AU)-	ENVJAN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248497.027	LB281263.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	90

Metals in Water (Dissolved) by ICPOES

Metals in Water (letals in Water (Dissolved) by ICPOES					Met	hod: ME-(Al	J)-[ENV]AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248506.001	LB281250.004	Magnesium, Mg	mg/L	0.1	330	280	50.5	101

Total Cyanide in v	Total Cyanide in water by Discrete Analyser					Method: ME	E-(AU)-[ENV]]AN077/AN287
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248519.003	LB281273.010	Total Cyanide	mg/L	0.004	0.027	<0.004	0.025	105

Total Phenolics in Water

Total Phenolics in	Total Phenolics in Water					Met	hod: ME-(AL	J)-[ENV]AN295
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248494.001	LB281341.024	Total Phenols	mg/L	0.05	0.18	0.003	0.2	90

Trace Metals (Di	ssolved) in Water by	ICPMS					Met	nod: ME-(AL)-[ENV]AN318
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248497.027	LB281319.004		Arsenic	μg/L	1	22	<1	20	109
			Cadmium	μg/L	0.1	21	<0.1	20	106
			Chromium	μg/L	1	22	<1	20	108
			Copper	μg/L	1	21	<1	20	105
			Lead	μg/L	1	20	<1	20	101
			Nickel	μg/L	1	21	<1	20	107
			Zinc	μg/L	5	23	<5	20	96
VOCs in Water							Meti	nod: ME-(AL)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248519.004	LB281443.025	Monocyclic	Benzene	μg/L	0.5	56	<0.5	45.45	122
		Aromatic	Toluene	μg/L	0.5	62	<0.5	45.45	137
			Ethylbenzene	µg/L	0.5	62	<0.5	45.45	137

			Ethylbenzene	μg/L	0.5	62	<0.5	45.45	137
			_m/p-xylene	μg/L	1	120	<1	90.9	132
			o-xylene	μg/L	0.5	61	<0.5	45.45	134
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	48	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.5	9.4	-	105
			d8-toluene (Surrogate)	μg/L	-	11.5	7.6	-	115
			Bromofluorobenzene (Surrogate)	μg/L	-	9.6	10	-	96
		Totals	Total BTEX	µg/L	3	360	<3	-	-
	m Hydrocarbons in Wa	ater							
o <mark>latile Petroleu</mark> QC Sample	m Hydrocarbons in Wa Sample Number	ater	Parameter	Units	LOR	Result	<mark>Met</mark> Original	<mark>hod: ME-(AU</mark> Spike	
	-	ater	Parameter _TRH C6-C10	Units μg/L	LOR 50	Result 840			I)- <mark>[ENV]AN433</mark> Recovery% 84
QC Sample	Sample Number	ater					Original	Spike	Recovery%
QC Sample	Sample Number	ater Surrogates	TRH C6-C10	μg/L	50	840	Original <50	Spike 946.63	Recovery% 84
C Sample	Sample Number		TRH C6-C10 TRH C6-C9	μg/L μg/L	50 40	840 740	Original <50 43	Spike 946.63 818.71	Recovery% 84 85
C Sample	Sample Number		TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L	50 40 -	840 740 10.5	Original <50 43 9.4	Spike 946.63 818.71	Recovery% 84 85 105
C Sample	Sample Number		TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L	50 40 - -	840 740 10.5 11.5	Original <50 43 9.4 7.6	Spike 946.63 818.71 -	Recovery% 84 85 105 115
C Sample	Sample Number	Surrogates	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L	50 40 - - -	840 740 10.5 11.5	Original <50 43 9.4 7.6 10	Spike 946.63 818.71 - -	Recovery% 84 85 105 115 96

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Fl Australia

Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957

E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Ref. E26047.E09_Rev1 Miled Akle

5 April 2024

M Projects Pty Ltd Suite 16, 99 Moore Street, Leichhardt NSW 2040

Re: Response to Parramatta Council regarding the criteria adopted for Detailed Site Investigation for Melrose Park-Tomola Site (Hope St)

1. Background

At the request of M Projects Pty Ltd ('the client'), El Australia (El) has prepared the following response to address Council's query regarding the redevelopment at 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW ('the site'). The land is proposed for a multi-storey residential complex, with mixed land (commercial/residential) use on the ground floor level, overlying two level basement car park. An aesthetic landscaping area of 2,673 m² with access to deep soil will also be established on the eastern portion of the site.

A Detailed Site Investigation (DSI) was provided to support re-zoning of the site through a Development Application (DA) to City of Parramatta Council and to determine the contamination status of the site and to meet obligations under the State Environmental Planning Policy (Resilience and Hazards) (2021), for the assessment and management of contaminated soil and/or groundwater entitled:

 EI (2023) Detailed Site Investigation; 19 Hope Street and 69, 71, 73, 75 and 77 Hughes Avenue, Melrose Park NSW, Report No. E26047.E02_Rev0, dated 6 July 2023.

Recent discussions with the client indicated that Council requested further clarification regarding the criteria adopted in the DSI. Originally, the Planning Agreement stated the site would be remediated to HIL A – residential land with accessible gardens. A draft Tomola VPA was amended by solicitors and recommended that the open space land under the transmission easement be remediated to HIL C – Public Open Space.

2. Response to Council Request

Based on the information provided, the following response is given in Table 1 regarding contamination criteria and remediation for open space under the transmission lines.

Information Required	Response	
Contamination and Remediation of Open Space	Subsequent to the Phase 1 report undertaken by ADE	Y.
"In the draft Tomola VPA amended by your solicitors, it was recommended that the Open	Group, EI carried out a Phase 2 investigation which is detailed in Section 1.	
Space land under the transmission easement be remediated to HIL C – Public Open Space. Originally, the Planning Agreement stated the site	In the DSI report EI adopted the HSL - A/B and HIL - A (residential land with accessible gardens) as per initial Planning Agreement. Based on the adopted criteria (EI,	

 Table 1
 Response Table – Council Clarification

Information Required	Response
would be remediated to HIL A – residential land with accessible gardens.	2023) contaminant concentrations in representative fill and natural soil samples were found to be below the adopted
	human health and ecological criteria applicable to Residential settings with accessible soils, with the following exception:
verification in writing as to why the HIL C Open Space land use scenario proposed for the site is the appropriate standard of remediation under the National Environment Protection (Assessment of Site Contamination) Measure (1999) amendment 2013 (NEPM).	 Asbestos at BH3 (depths between 0.2-0.3 mBGL, at least), exceeding the criteria and warranting remediation prior excavation works or during excavation works, which could be conducted following demolition as part o the waste classification of soils for off-site disposal.
It would be appreciated if you could provide this information as soon as practicable so that we can progress the drafting of the planning agreement and deal with any further questions that may arise	The amended VPA indicates that the open space Ian under the transmission easement would be remediated t HSL and HSL & HIL C – Public Open Space. The criteri for open space (HSL & HIL C) is less conservative than the screening criteria used in the DSI (HSL - A/B and HIL - A).
during the reporting process."	After reviewing the DSI (EI,2023), the reported asbesto exceedances at BH3 would require remediation for either Public Open Space criteria (HSL & HIL C) or for residentia development HSL - A/B and HIL – A.
	Based on the above and considering, the conclusions an recommendations in the DSI (EI,2023) EI consider that the contamination detected would not alter the overall decisio making. Reported contamination at BH3 (asbestos) would

3. Conclusion

In summary, EI understands that the amended VPA indicates that the Open Space land under the transmission easement would be remediated to HIL C – Public Open Space. The open space criteria (HIL C) is less conservative than the criteria (HIL A – residential land with accessible gardens) used in the DSI (EI, 2023) which was adopted from the initial Planning Agreement.

El consider the site can be made suitable for the proposed future site development and re zoning, inclusive of the land under the transmission easement (HIL C – Public Open Space) as per amended VPA, provided the Recommendations detailed in the DSI (EI, 2023) are adopted.

Should you require anything further, please do not hesitate to contact the undersigned.

For and on behalf of **EI AUSTRALIA**

Ley's Repaire

SERGIO RAPOSEIRA Environmental Engineer

MJDale

Malcolm Dale Senior Principal – Contaminated Land CEnvP (SC Specialist) Cert No: #SC40038

require remediation so the site could be made suitable for the proposed re zoning as either residential or open space.

Response to Parramatta Council 130 Joynton Avenue, Zetland NSW E25861.E09.001_Rev0 5 April 2024

