Alliance Geotechnical

Engineering | Environmental | Testing

Report Type: Detailed Site Investigation

Project Address: Charles Street Square, Parramatta, NSW Lot 1 in DP506760, Lot 2 in DP532539, Lot 2 in DP869816, Lot 2 in DP532539 and Lot 1 in DP1172250

> Client Name: Northrop Consulting Engineers P/L

> > 1 September 2020 Report No: 7957-ER-2-1 Rev02

We give you the right information to make the right decisions

Alliance Geotechnical Pty Ltd | ABN: 62 106 885 214 PO Box 275, Seven Hills NSW 1730 - 10 Welder Road, Seven Hills, NSW Phone: 1800 288 188 - Office Email: office@allgeo.com.au - Web: allgeo.com.au

Manage the earth, eliminate the risk

DOCUMENT CONTROL

Revision	Date	Author	Reviewer	Comments
Rev 0	21 June 2019	T. O'Brien	S. Wallace	Issued for client review
Rev 01	15 June 2020	M. Asadabadi	A. Rooney	Updated to include previous contamination assessment report
Rev 02	1 September 2020	M. Asadabadi	A. Rooney	-

Author Signature	Method	Reviewer Signature	A
Name	Mehran Asadabadi	Name	Aidan Rooney
Title	Senior Environmental Scientist	Title	Principal Environmental Scientist

EXECUTIVE SUMMARY

Alliance Geotechnical Pty Ltd (AG) was engaged by Northrop Consulting Engineers P/L, to undertake a Detailed Site Investigation for Charles Street Square, Parramatta, NSW (refer **Figure 1** with the 'site' boundaries outlined in **Figure 2**).

AG has the following project appreciation:

- The site covers an area of approximately 2,800m2;
- The site is proposed for redevelopment, demolition, utility adjustments, civil infrastructure, planting and urban amenities;
- Following the completion of a Stage 1 Preliminary Site Investigation, one (1) area of environmental concern (AEC) was identified; and
- A Detailed Site Investigation (DSI) has been undertaken to investigate potential contamination within the identified AEC.

The objectives of this project were to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

AG undertook the following scope of works to address the project objective:

- A desktop review of relevant information pertaining to the site;
- A site walkover to understand current site conditions;
- The preparation of a Sampling and Analysis Quality Plan (SAQP);
- Conduct an intrusive site investigation to establish ground conditions and to facilitate the collection of representative soil samples;
- Laboratory analysis of selected samples collected during the field investigation; and
- An assessment of the contamination status of the site and the recommendation of any further remedial requirements associated with the redevelopment of the site (if necessary).

Conclusions and recommendations

Based on AG's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, AG makes the following conclusions:

- The detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present:
 - o An unacceptable inhalation / vapour intrusion human health exposure risk; or
 - o An unacceptable petroleum management limit risk.

- The detected concentrations of benzo(a)pyrene TEQ in the soils assessed present a direct contact human health exposure risk, at sampling locations BH3-0.1, BH4-0.1, BH5-0.1, BH5-1.0 and BH5-2.0;
- Asbestos was detected within four (4) of the eight (8) locations sampled (BH02, BH06, BH07 and BH08), and is considered to present an unacceptable human health exposure risk during the future intrusive/redevelopment works, in these locations;
- Ecological Investigation Levels were exceeded for Copper at sampling location BH7 and Zinc at sampling locations BH2, BH3 and BH7. As such, may present an unacceptable ecological exposure risk during the future intrusive/redevelopment works, in these locations;
- As the majority of the site is covered by hardstand materials and landscaped areas, and that the detected contaminants in soil were located at depth and will not be disturbed until commencement of redevelopment works, AG considers that there is no immediate human health risk to occupants of surrounding areas, as well as nearby pedestrians; and
- Based on the assessments undertaken as part of this investigation, AG has concluded that the site can be made suitable for the proposed redevelopment pending supplementary contamination assessment and subsequent remediation of the aforementioned exceedances of the adopted site assessment criteria.

Based on these conclusions, AG makes the following recommendations:

- A supplementary contamination assessment should be carried out to determine the extent of contamination within areas of detected contamination, with regard to the asbestos and PAH contamination. The PAH concentrations exceeding the adopted criteria are likely associated with black/ brown coal and coke and may pose an unacceptable exposure risk via direct contact, ingestion and inhalation. Considerations should be given to further assessment of soils for the leachability characteristics of the PAH soil contamination and assessment of groundwater that may have been potentially impacted by the overlying fill materials. An appropriate asbestos assessment should be completed in accordance with WA DOH 2009 with considerations should be made to allow for test pit exploration excavations, in order to adequately quantify the asbestos exposure risk;
- Remediation will require the completion of a Remedial Action Plan (RAP) detailing the works
 required to adequately delineate, remediate and validate the areas of identified
 contamination;
- Following remediation of the identified contamination, validation sampling and a site validation report will be required to confirm the effectiveness of the remedial works;
- Investigation of Acid Sulfate Soils (ASS) for any soil proposed for excavation / disposal at or below 2.0 metres bgl; and
- Any soil proposed for disposal should be classified and disposed of as per the NSW EPA *Waste Classification Guidelines 2014.*

This report, including its conclusions and recommendations, must be read in conjunction with the limitations presented in **Section 13**.

TABLE OF CONTENTS

DOCUN	MENT CONTROL	1	
EXECU	ITIVE SUMMARY	2	
1. INT	RODUCTION	1	
1.1.	Background	1	
1.2.	Objectives	1	
1.3.	Scope of Work	1	
2. SIT	E IDENTIFICATION	2	
	OLOGY, ACID SULFATE SOILS, TOPOGRAPHY AND DGEOLOGY	3	
3.1.	Geology	3	
3.2.	Acid Sulfate Soils	3	
3.3.	Topography	3	
3.4.	Hydrogeology	3	
4. PR	EVIOUS CONTAMINATION ASSESSMENTS	4	
4.1.	EIS 2014	4	
4.2.	AG 2019	5	
5. CO	NCEPTUAL SITE MODEL	7	
5.1.	Areas of Environmental Concern	7	
5.2.	Land Use Setting	7	
5.3.	Direct Contact – Human Health	7	
5.4.	Inhalation / Vapour Intrusion – Human Health	7	
5.5.	Aesthetics – Human Health	8	
5.6.	Terrestrial Ecosystems – Ecological Health	8	
5.7.	Management Limits for Petroleum Hydrocarbon Compounds	8	
6. DA	TA QUALITY OBJECTIVES	9	
6.1.	Step 1: State the problem	9	
6.2.	Step 2: Identify the decision/goal of the study	9	
6.3.	Step 3: Identify the information inputs	9	
6.4.	Step 4: Define the boundaries of the study	. 10	
6.5.	Step 5: Develop the analytical approach (or decision rule)	. 11	
6.5.	1. Field Duplicates and Field Triplicates	. 11	
6.5.2	2. Trip blanks	. 11	
6.5.3	3. Laboratory Analysis Quality Assurance / Quality Control	. 11	
6.5.4	4. If/Then Decision Rules	. 11	
6.6.	Step 6: Specify the performance or acceptance criteria	. 12	
6.7.	Step 7: Develop the plan for obtaining data	. 14	
6.7.	1. Sampling Point Density and Locations	. 14	
6.7.2	2. Sampling Methodology	. 15	
6.7.3	6.7.3. Identification, Storage and Handling of Samples		

6.7	7.4. Decontamination	16
6.7	7.5. Laboratory Selection	16
6.7	Laboratory Analytical Schedule	
6.7	7.7. Laboratory Holding Times, Analytical Methods and Limits of Reporting	16
7. DE	ETAILED SITE INVESTIGATION METHODOLOGY	18
7.1.	Scope of Fieldworks	
7.2.	Soil Sampling Methodology	18
7.3.	Laboratory Analysis	19
8. FI	ELDWORK	20
8.1.	Soil Sampling	20
8.2.	Site Geology	20
8.3.	Odours	21
8.4.	Staining	21
8.5.	Potential Asbestos Containing Materials	21
9. LA	ABORATORY ANALYSIS	22
10.	DATA QUALITY INDICATOR ASSESSMENT	24
10. 10.1.		
	Completeness	24
10.1.	Completeness Comparability	24 25
10.1. 10.2.	Completeness Comparability Representativeness	24 25 26
10.1. 10.2. 10.3.	Completeness Comparability Representativeness Precision	24 25 26 27
10.1. 10.2. 10.3. 10.4. 10.5.	Completeness Comparability Representativeness Precision	24 25 26 27 28
10.1. 10.2. 10.3. 10.4. 10.5.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION	24 25 26 27 28 29
10.1. 10.2. 10.3. 10.4. 10.5. 11.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION Human Health - Direct Contact (HIL – C Public Open Space)	
10.1. 10.2. 10.3. 10.4. 10.5. 11. 11.1.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION Human Health - Direct Contact (HIL – C Public Open Space) Human Health – Inhalation / Vapour Intrusion (Public Open Space)	24 25 26 27 28 29 29 31
10.1. 10.2. 10.3. 10.4. 10.5. 11. 11.1. 11.2.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION Human Health - Direct Contact (HIL – C Public Open Space) Human Health – Inhalation / Vapour Intrusion (Public Open Space) TRH Management Limits (Public Open Space)	
10.1. 10.2. 10.3. 10.4. 10.5. 11. 11.1. 11.2. 11.3.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION Human Health - Direct Contact (HIL – C Public Open Space) Human Health – Inhalation / Vapour Intrusion (Public Open Space) TRH Management Limits (Public Open Space) Aesthetics	24 25 26 27 28 29 29 31 31 31
10.1. 10.2. 10.3. 10.4. 10.5. 11. 11.1. 11.2. 11.3. 11.4. 11.5.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION Human Health - Direct Contact (HIL – C Public Open Space) Human Health – Inhalation / Vapour Intrusion (Public Open Space) TRH Management Limits (Public Open Space) Aesthetics	24 25 26 27 28 29 29 31 31 31 32
10.1. 10.2. 10.3. 10.4. 10.5. 11. 11.1. 11.2. 11.3. 11.4. 11.5. 12.	Completeness Comparability Representativeness Precision Accuracy DISCUSSION Human Health - Direct Contact (HIL – C Public Open Space) Human Health – Inhalation / Vapour Intrusion (Public Open Space) TRH Management Limits (Public Open Space) Aesthetics Terrestrial Ecosystems	

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Layout and sampling plan
Figure 3	Exceedances recorded

LIST OF TABLES

- Table LAR1Laboratory Analytical Results SoilsTable LAR2Laboratory Analytical Results ASS
- Table LAR3 Laboratory Analytical Results Asbestos
- Table LAR4 Laboratory Analytical Results RPDs

LIST OF APPENDICES

- A Proposed Development Plans
- B Groundwater
- C Borehole Logs
- D Laboratory Documentation
- E PAH Source Analyst result summary

LIST OF ABBREVIATIONS

AG	Alliance Geotechnical Pty Ltd
AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	Aboveground storage tank
Bgl	Below ground surface
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
Btoc	Below top of casing
CoC	Chain of Custody
CoT	Certificate of Title
CSM	Conceptual Site Model
DPI-W	Department of Primary Industry – Water
DSI	Detailed Site Investigation
EC	Electrical conductivity
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
GS	Geological Survey of NSW
HIL	Health Investigation Levels
HSL	Health Screening Levels
IL	Investigation Levels
LOR	[Laboratory] Limit of reporting
MS	Matrix spike
ΝΑΤΑ	National Association of Testing Laboratories
N/A	Not applicable
ND	Not detected
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NSW EPA	NSW Environment Protection Authority
OCP	Organochlorine Pesticide
OPP	Organophosphorus Pesticide
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PID	Photo-ionisation detector
PSH	Phase separated hydrocarbon
PSI	Preliminary Site Investigation
QA/QC	Quality assurance/Quality control
RPD	Relative percentage difference
SAQP	Sampling Analysis and Quality Plan
SVOC	Semi-volatile organic compound
TDS	Total dissolved solids
TPH	Total petroleum hydrocarbon
PVC	Polyvinyl Chloride

USCSUnified Soil Classification SystemUSTUnderground storage tankVOCVolatile organic compounds

1. INTRODUCTION

1.1. Background

Alliance Geotechnical Pty Ltd (AG) was engaged by Northrop Consulting Engineers P/L, to undertake a Detailed Site Investigation for Charles Street Square, Parramatta, NSW (refer **Figure 1** with the 'site' boundaries outlined in **Figure 2**).

AG has the following project appreciation:

- The site covers an area of approximately 3,665m2;
- The site is proposed for redevelopment, demolition, utility adjustments, civil infrastructure, planting and urban amenities;
- Following the completion of a Stage 1 Preliminary Site Investigation, one (1) area of environmental concern (AEC) was identified; and
- A Detailed Site Investigation (DSI) has been undertaken to investigate potential contamination within the identified AEC.

1.2. Objectives

The objectives of this project were to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

1.3. Scope of Work

AG undertook the following scope of works to address the project objective:

- A desktop review of relevant information pertaining to the site;
- A site walkover to understand current site conditions;
- The preparation of a Sampling and Analysis Quality Plan (SAQP);
- Conduct an intrusive site investigation to establish ground conditions and to facilitate the collection of representative soil samples;
- Laboratory analysis of selected samples collected during the field investigation; and
- An assessment of the contamination status of the site and the recommendation of any further remedial requirements associated with the redevelopment of the site (if necessary).

2. SITE IDENTIFICATION

The site is identified as portions of Lot 1 in DP506760, Lot 2 in DP532539, Lot 2 in DP869816, Lot 2 in DP532539 and Lot 1 in DP1172250

The approximate geographic coordinates of the middle of the site, inferred from Google Earth were 33°48'48" S and 151°00'35" E.

The locality of the site is set out in Figure 1.

The general layout and boundary of the site is set out in Figure 2.

The site covers an area of 3,665 m².

3. GEOLOGY, ACID SULFATE SOILS, TOPOGRAPHY AND HYDROGEOLOGY

3.1. Geology

A review of the Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) 1983, indicated that the site is likely to be underlain by Wianamatta Group (Rwa) Ashfield Shale, defined as black to dark grey shale and laminite.

3.2. Acid Sulfate Soils

A review of the Department of Land and Water Conservation NSW Acid Sulfate Soil Risk Map for Prospect / Parramatta (1:25,000 scale) indicated that the site two different areas mapped as:

- **Disturbed Terrain** (Section 2) which may include filled areas, which often occur during reclamation of low-lying swamps for urban development. Other disturbed terrain includes areas which have been mined or dredged, or have undergone heavy ground disturbance through general urban development or construction of dams or levees. Soil investigations are required to assess these areas for acid sulfate potential.
- No Known Occurrence (Section 5 and 7) for which Acid sulfate soils are not known or expected to occur in these environments. Land management activities are not likely to be affected by acid sulfate soil materials. The typical landform types include bedrock slopes, elevated Pleistocene and Holocene dunes, and elevated alluvial plains.

Further assessment of acid sulfate soils in the context of this investigation is considered by AG as warranted.

3.3. Topography

The site topography slopes from the southwest (RL7.9m) to the northeast (RL2m).

3.4. Hydrogeology

Surface water courses proximal to the site included the Parramatta River residing adjacent to the north.

Based on distances to the nearest surface water course and the site topography, groundwater flow in the vicinity of the site is considered likely to be towards the north.

A review of the NSW Office of Water groundwater database (<u>www.http://allwaterdata.water.nsw.gov.au/water</u>) implemented on 16 January 2019 indicated there were no registered groundwater features located within a 500m radius of the site.

A copy of the NSW Office of Water search record is presented in Appendix B.

4. PREVIOUS CONTAMINATION ASSESSMENTS

The following reports were considered during the undertaking of this project:

- Environmental Investigation Services (EIS) 2014, 'Asbestos Management Plan', dated August 2014, ref: E27279Krpt2-AMP; and
- Alliance Geotechnical (AG) 2019, 'Stage 1 Preliminary Site Investigation' dated August 2019, ref: 7957-ER-1-1(REV 01).

4.1. EIS 2014

EIS were commissioned by City of Parramatta to prepare an asbestos management plan (AMP) for a proposed boardwalk and landscaping project along two sections of Parramatta River foreshore.

The two sections of land of which the AMP was subject to, were summarised in the AMP, and the extract is shown below:

"East Section: The proposed development for the east section of the site includes two main parts:

- An elevated boardwalk approximately 260m in length from the Charles Street weir heading east; and
- A track along the floodplain of the river on either side of the Gasworks Bridge, approximately 130m in length, in which ground levels are to be reduced to form a salt marsh environment.

<u>West Section:</u> The proposed development for the west section of the site involves naturalising the banks of the Parramatta River between the Charles Street weir and the Elizabeth Street footbridge by removing the existing concrete canal and terracing the banks. Additionally, it is proposed to replace the existing stairwell on the northern embankment slightly to the west of the Elizabeth Street footbridge and to construct a new stairway from the river walk up to the bridge on the southern side of the embankment, on the eastern side of the Elizabeth Street Footbridge."

AG notes that above sections that the AMP was subjected to are mostly outside of AG's site boundary and do not impact, in the context of land contamination, this DSI. However, boreholes BH24 and BH25 of the west section fall on the western boundary of the AG subject site.

Based on the above and review of EIS 2014, AG notes that EIS 2014 boreholes BH24 and BH25 were not reported to contain contamination. In relation to asbestos contamination, EIS 2014 made the following recommendation for locations that were not impacted by asbestos:

"For all remaining site areas of the site not impacted by asbestos we recommend a program that monitors the condition of the site soil for the potential presence of asbestos. We recommend that the monitoring program is undertaken for the duration of the site works involving excavation and disturbance of in-situ soil.

We recommend that the following monitoring program is undertaken:

- Intermittent air monitoring during large scale earthworks. This may include one round of
 monitoring at the commencement of significant earthworks in a selected area. Provided the
 results are negative for the first round of monitoring, other monitoring events could be
 undertaken once a week;
- Site inspections should be undertaken by the licenced asbestos assessor once significant earthworks have been undertaken at a selected area and the surface soils have been exposed and are easily inspected. Inspections should also be undertaken where required, for instance if the earthworks contractor encounters potential asbestos material; and
- We recommend that soil sampling is undertaken at the time of the site inspection following significant earthworks in order to screen the soil for any microscopic or trace amounts of

asbestos material within the soil matrix. The soil sampling density would be judgemental and dependent on-site conditions and the nature of proposed landscape works in the given area.

In the event any asbestos is identified by soil or air analysis the area would be subject to conditions associated with asbestos removal. Management options would be provided on an on-going basis by the licenced asbestos assessor.

The exact nature of the monitoring program should be clarified with Council prior to site works commencing.

For the areas of the site not impacted by asbestos we recommend that dust levels are suppressed, the site surface is kept damp and personal hygiene is kept to a high standard."

4.2. AG 2019

Alliance Geotechnical Pty Ltd (AG) was engaged by Northrop Consulting Engineers P/L, to undertake a Stage 1 preliminary site investigation (PSI) for Charles Street Square, Parramatta, NSW.

AG had the following project appreciation:

- The site is proposed for redevelopment, demolition, utility adjustments, civil infrastructure, planting and urban amenities; and
- A preliminary site investigation is required to inform the redevelopment design process.

The objectives of this investigation were to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting;
- Assess the potential for acid sulfate soils to be present at the site; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

The scope of works undertaken to address the investigation objectives, included:

- A desktop review;
- A site walkover; and
- Data assessment and reporting.

The site history data collected and site walkover observations made were assessed within the objectives of this investigation and in the context of the proposed development works. That assessment identified areas of environmental concern (AEC) and contaminants of potential concern (COPC) which have the potential to be present on site. The AEC identified are presented in **Table 4.2.1.** below.

Table 4.2.1. AEC's and associated COPC's

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
AEC01	Imported fill pad	Uncontrolled filling	Metals, PAH, TRH/BTEX, OCP, PCB, acid sulfate soils (ASS) and asbestos

Based on AG's assessment of the desktop review information and fieldwork data, in the context of the proposed redevelopment, AG makes the following conclusions:

- There is a potential for contamination to be present on site, as a result of past and present land use activities; and
- The site could be made suitable (from a land contamination perspective) for the proposed commercial/industrial development, subject to further assessment of the identified AEC, and subsequent management/remediation of any identified unacceptable land contamination risks.

Based on these conclusions, AG made the following recommendations:

- A detailed site investigation (DSI) should be undertaken for identified areas of environmental concern; and
- Further contamination assessment works should be undertaken by a suitably experienced environmental consultant.

5. CONCEPTUAL SITE MODEL

5.1. Areas of Environmental Concern

The site history data collected and site walkover observations made were assessed within the objectives of this investigation and in the context of the proposed development works. That assessment identified areas of environmental concern (AEC) and contaminants of potential concern (COPC) which have the potential to be present on site. The AEC identified and associated COPC are presented in **Table 5.1**.

Table 5.1: AEC and COPC

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
AEC01	Imported fill	Uncontrolled filling	Metals, PAH, TRH/BTEX, OCP, PCB, acid sulfate soils (ASS) and asbestos

AG notes that the contaminant laydown mechanism for these areas of environmental concern is considered likely to be 'top down'. Based on field observations the lateral and vertical extents of these AEC are readily identifiable visually.

5.2. Land Use Setting

AG understands that the proposed development works includes demolition, utility adjustment, civil infrastructure, planting and urban amenities.

Based on the proposed development works and guidance provided in Section 2.2 of NEPM (2013), AG considers it reasonable to adopt the 'HIL C – public open space and parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths', land use setting, for the purpose of assessing land contamination exposure risks.

5.3. Direct Contact – Human Health

AG notes that the proposed development includes building footprints and hardstand pavement areas across portions of the site, which would act as a direct contact barrier between potential land contamination and onsite receptors during operation of the site. However, some open space and landscaping areas will be established on site. In these areas, it is considered that a direct contact exposure pathway may be present between potential contamination and onsite receptors.

5.4. Inhalation / Vapour Intrusion – Human Health

In order for a potentially unacceptable inhalation / vapour intrusion human health exposure risk to exist, a primary vapour source (e.g. underground storage tank) or secondary vapour source (e.g. significantly contaminated soil or groundwater).

The historical evidence reviewed indicated a low likelihood for a potential primary source to be present on the site. The same historical evidence indicated a potential land use activity to be uncontrolled filling (AEC01).

The excavation, transport, placement and spreading of imported (uncontrolled) fill material involves significant disturbance of soils which typically results in volatilisation of vapour producing contaminants. On that basis, the potential for vapours to be present in soils on site at concentrations which might present an unacceptable exposure risk, is considered to be low to negligible, however as a conservative measure inhalation / vapour intrusion was included as part of this assessment.

Potential sources of groundwater contamination in the immediate vicinity of the site (e.g. service stations) were not observed. A groundwater source of vapours was considered unlikely at the site.

5.5. Aesthetics – Human Health

Section 3.6.3 of NEPM (2013) advises that there are no specific numeric aesthetic guidelines, however site assessment requires a balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity.

The historical evidence indicated potential land use activities being undertaken on the site which have the potential to result in unacceptable aesthetic impacts.

AG notes that the proposed development includes building footprints and hardstand pavement areas across portions of the site, which would act as an exposure barrier between potential aesthetic impacts and onsite receptors during operation of the site. However, some open space and landscaping areas will be established on site. In these areas, it is considered that an aesthetics exposure pathway may be present between potential contamination and onsite receptors.

5.6. Terrestrial Ecosystems – Ecological Health

There was no visual evidence observed to suggest significant or widespread phytotoxic impact (in the form of dieback or plant stress) in vegetation at the site. Similar observations were made of visible vegetation on land adjacent to the site.

Section 3.4.1 of NEPM (2013) advises the protection of the environment (terrestrial and aquatic) should be a consideration for all site assessments.

Based on field observations, advice in NEPC (1999) and the sensitive nature, extent and location of the proposed development concept, the need for further ecological assessment is considered warranted.

5.7. Management Limits for Petroleum Hydrocarbon Compounds

NEPM (2013) notes that there are a number of policy considerations which reflect the nature and properties of petroleum hydrocarbons:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure (e.g. penetration of or damage to, in-ground services by hydrocarbons).

NEPM (2013) includes 'management limits' to avoid or minimise these potential effects. Application of the management limits requires consideration of site-specific factors such as the depth of excavation and services and depth to groundwater, to determine the maximum depth to which the limits should apply.

6. DATA QUALITY OBJECTIVES

NEPM ASC 2013 provides guidance on the development of data quality objectives (DQO) using a seven-step process.

The DQO for this project are set out in **Sections 6.1** to **6.7** of this report.

6.1. Step 1: State the problem

The first step involves summarising the contamination problem that requires new environmental data and identifying resources available to solve the problem.

The objectives of this project are to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

The project is being undertaken because:

- The site is proposed for redevelopment, demolition, utility adjustments, civil infrastructure, planting and urban amenities; and
- A contamination investigation is required to inform the redevelopment design process.

The project team identified for this project consists of suitably experienced environmental consultants from AG.

The regulatory authorities identified for this project include NSW EPA and the City of Parramatta.

6.2. Step 2: Identify the decision/goal of the study

The second step involves identifying decisions that need to be made about the contamination problem and the new environmental data required to make them.

The decisions that need to be made during this project include:

- Is the environmental data collected for the project, suitable for assessing relevant land contamination exposure risks?
- Do the concentrations of identified contaminants of potential concern (COPC) present an unacceptable exposure risk to identified receptors, for the proposed land use setting?
- Is the site suitable for the proposed land use setting, in the context of land contamination?

6.3. Step 3: Identify the information inputs

The third step involves identifying the information needed to support decisions and whether new environmental data will be needed.

The inputs required to make the decisions set out in Section 6.2 for this project, will include:

• Data obtained during searches of the site's history;

- The nature and extent of sampling at the site, including both density and distribution;
- Samples of relevant site media;
- The measured physical and/or chemical parameters of the site media samples (including field screening and laboratory analysis, where relevant); and
- Assessment criteria adopted for each of the media sampled.

Taking into consideration the objectives of this project, and the conceptual site model and land use setting presented in **Section 5** of this project, the following assessment criteria relevant to the proposed land use setting have been adopted for this project:

- Human health direct contact HILs in Table 1A (1) in NEPM ASC 2013 and HSLs in Table B4 of Friebel, E & Nadebaum, P (2011);
- Human health inhalation/vapour intrusion HSLs in Table 1 (A) in NEPM ASC 2013;
- Human health (asbestos) absence / presence for preliminary screening, and no visible ACM on surface;
- Petroleum hydrocarbon compounds (management limits) Table 1 B (7) of NEPM ASC 2013;
- Ecological Investigation and Screening Levels as calculated per NEPM ASC 2013 Table 1 (B) 1-6;
- CRC CARE 2017, *Risk-based management and remediation guidance for benzo(a)pyrene*, CRC CARE Technical Report No.39, CRC for Contamination Assessment and Remediation of the Environment, Newcastle Australia; and
- Aesthetics no highly malodorous site media (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in site media, organosulfur compounds), no hydrocarbon sheen on surface water, no discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature, no large monolithic deposits of otherwise low risk material (e.g. gypsum as powder or plasterboard, cement kiln dust), no presence of putrescible refuse including material that may generate hazardous levels of methane such as a deep-fill profile of green waste or large quantities of timber waste, and no soils containing residue from animal burial (e.g. former abattoir sites).

6.4. Step 4: Define the boundaries of the study

The fourth step involves specifying the spatial and temporal aspects of the environmental media that the data must represent to support decisions.

The spatial extent of the project will be limited to the subject investigation area as defined by its boundaries (refer **Figure 2**).

The temporal boundaries of the project include:

- The project timeframe presented in the AG proposal for this project,
- Unacceptable weather conditions at the time of undertaking fieldwork, including rainfall, cold and/or heat;
- Access availability of the site (to be defined by the site owner/representative); and
- Availability of AG field staff (typically normal daylight working hours, Monday to Friday).

The lateral extent that contamination is expected to be distributed across, based on the conceptual site model, is defined by the inferred boundaries of the areas of environmental concern (AEC).

The vertical extent that contamination is expected to be distributed across, based on the conceptual site model and the project scope, is likely to be limited to fill material.

The scale of the decisions required will be based on the entire site.

Constraints which may affect the carrying out of this project may include access limitations, presence of above and below ground infrastructure, and hazards creating health and safety risks.

6.5. Step 5: Develop the analytical approach (or decision rule)

The fifth step involves defining the parameter of interest, specifying the action level, and integrating information from Steps 1 to 4 into a single statement that gives a logical basis for choosing between alternative actions.

6.5.1. Field Duplicates and Field Triplicates

Field duplicate and field triplicates will be collected at a rate of one per twenty (5%) site samples collected. The duplicates and triplicates collected will be analysed for at least one of the analytes that the parent sample of the duplicate/triplicate is being scheduled for analysis for (with the exception of asbestos).

The relative percent difference (RPD) of concentrations of relevant analytes, between the parent sample and the duplicate/triplicate will be calculated.

6.5.2. Trip blanks

One trip blank sample will be used and scheduled for analysis, for each sampling event, if site samples being collected that day are being analysed for volatile contaminants of concern (typically BTEXN and/or TRH C_6 - C_{10}).

6.5.3. Laboratory Analysis Quality Assurance / Quality Control

The analytical laboratory QA/QC program will typically include laboratory method blank samples, matrix spike samples, surrogate spike samples, laboratory control samples, and laboratory duplicate samples.

6.5.4. If/Then Decision Rules

AG has adopted the following 'if/then' decision rules for this project:

- If the result of the assessment of field data and laboratory analytical data is considered acceptable, then that field data and laboratory analytical data is suitable for interpretation within the scope of this project; and
- If the field data and laboratory analytical data is within the constraints of the assessment criteria adopted for this project (refer **Section 6.3**), then the contamination exposure risks to identified receptors, are considered acceptable.

In the event the assessment of field data and/or laboratory analytical data results in the data being not suitable for interpretation, then AG will determine if additional data is required to allow interpretation to be undertaken.

In the event that field data and/or laboratory analytical data exceeds the assessment criteria adopted for this project (refer **Section 6.3**), AG will undertake an assessment of the exceedance in the context of the project objectives to determine if additional data is required and whether management and/or remediation is required.

6.6. Step 6: Specify the performance or acceptance criteria

The sixth step involves specifying the decision maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data. When assessing contaminated land, there are generally two types of errors in decision making:

- Contamination exposure risks for a specific land use setting are acceptable, when they are not; and
- Contamination exposure risks for a specific land use setting are not acceptable, when they are.

AG will mitigate the risk of decision error by:

- Calculation of the 95% upper confidence limit (UCL) statistic to assess the mean concentration of relevant contaminants of potential concern;
- Assignment of fieldwork tasks to suitably experienced AG consulting staff, and suitably experienced contractors;
- Assignment of laboratory analytical tasks to reputable NATA accredited laboratories; and
- Assignment of data interpretation tasks to suitably experienced AG consulting staff, and outsourcing to technical experts where required.

AG will also adopt a range of data quality indicators (DQI) to facilitate assessment of the completeness, comparability, representativeness, precision and accuracy (bias).

Completeness	Completeness				
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion		
Critical locations sampled	Refer Section 6.7.1	Critical samples analysed according to DQO	Refer Section 6.7.6		
Critical samples collected	Refer Section 6.7.1	Analytes analysed according to DQO	Refer Section 6.7.6		
SOPs appropriate and complied with	100%	Appropriate laboratory analytical methods and LORs	Refer Section 6.7.6		
Field documentation complete	All sampling point logs, calibration logs and chain of custody forms	Sample documentation complete	All sample receipt advices, all certificates of analysis		
		Sample extraction and holding times complied with	Refer Section 6.7.7		

Table 6.6: Data Quality Indicators

Comparability			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Same SOPs used on each occasion	100%	Same analytical methods used by primary laboratory	Refer Section 6.7.7
Climatic conditions	Samples stored in insulated containers with ice, immediately after collection	Same LORs at primary laboratory	Refer Section 6.7.7
Same types of samples collected, and handled/preserved in same manner	All soil samples same size, all stored in insulated containers with ice	Same laboratory for primary sample analysis	All primary samples to Eurofins mgt
		Same analytical measurement units	Refer Section 6.7.7
Representativeness			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Appropriate media sampled according to DQO	Refer Section 6.7.6	Samples analysed according to DQO	Refer Section 6.7.6
Media identified in DQO sampled	Refer Section 6.7.6		
Precision			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Field duplicate / triplicate RPD	Minimum 5% duplicates and triplicates	Laboratory duplicates	No exceedances of laboratory acceptance criteria
	No limit for analytical results <10 times LOR		onena
	50% for analytical results 10- 20 times LOR		

SOPs appropriate and 100% complied with

Accuracy (bias)

Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Rinsate blanks	Less than laboratory limit of reporting	Laboratory method blank	No exceedances of laboratory acceptance criteria
Field trip spikes	Recoveries between 60% and 140%	Matrix spike recovery	No exceedances of laboratory acceptance criteria
Field trip blanks	Analyte concentration <lor< td=""><td>Surrogate spike recovery</td><td>No exceedances of laboratory acceptance criteria</td></lor<>	Surrogate spike recovery	No exceedances of laboratory acceptance criteria
		Laboratory control sample recovery	No exceedances of laboratory acceptance criteria

6.7. Step 7: Develop the plan for obtaining data

The seventh step involves identifying the most resource effective sampling and analysis design for generating the data that is required to satisfy the DQOs.

6.7.1. Sampling Point Density and Locations

Table A in NSW EPA *Sampling Design Guidelines* (1995) provides guidance on minimum sampling point densities required for site characterisation, based on detecting circular hot spots by using a systematic sampling pattern. This guidance assumes the investigator has little knowledge about the probable locations of the contamination, the distribution of the contamination is expected to be random (e.g. land fill sites) or the distribution of the contamination is expected to be fairly homogenous (e.g. agricultural lands).

However, Section 3.1 of NSW EPA Sampling Design Guidelines (1995) states that a judgemental sampling pattern can be used where there is enough information on the probable locations of contamination. Further to this, Section 6.2.1 of ASC NEPM 2013 states that the number and location or sampling points is based on knowledge of the site and professional judgement. Sampling should be localised to known or potentially contaminated areas identified from knowledge of the site either from site history or an earlier phase of site investigation. Judgemental sampling can be used to investigate sub-surface contamination issues in site assessment.

Table 1 in the *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, May 2009,* Western Australia Department of Health (DOH (2009)) indicates that where the 'likelihood of asbestos' is assessed as "possible" or "suspect", the investigation regimen should include a sampling density that is either judgemental or the same as that set out in Table A of NSW EPA *Sampling Design Guidelines* (1995) for assessing asbestos.

As this project has included gathering data which provides a reasonable understanding of site history (in the context of potential areas of environmental concern on the site) and taking into consideration Table 1 in WA DOH (2009), it is considered reasonable to adopt a systematic sampling pattern, with up to 8 sampling points.

The locations of the sampling points are set out in Figure 3.

6.7.2. Sampling Methodology

The sampling point methodology presented in **Table 6.7.2** will be used for this project. The methodology is based on a range of factors considered relevant to this project, including:

- The identified contaminants of potential concern;
- The suspected laydown mechanisms for those contaminants of concern;
- The suspected likely depth of contamination; and
- Site specific constraints which affect the type of sampling techniques suited to the site.

Table 6.7.2 Proposed Sampling Methodology

AEC	Sampling Point ID	Method	Target Depth of Sampling Point (m bgl)
AEC01	BH01 to BH08	Solid Flight Auger	2.0m, practical refusal or 0.3m into natural material, whichever occurs first

Reference will also be made to Table 5 in WA DOH (2009) for the sampling and screening of fill soils for the presence of asbestos, where practical. The application of asbestos screening criteria published in NEPM ASC 2013 may be limited.

6.7.3. Identification, Storage and Handling of Samples

Sample identifiers will be used for each sample collected, based on the sampling point number and the depth/interval the sample was collected from, e.g. a sample collected from BH03 at a depth of 0.2m below ground level or bottom of slab, would be identified as BH03-0.2.

Project samples will be stored in laboratory prepared glass jars (and zip lock bags if collected for asbestos or acid sulfate soil assessment).

Soil samples in glass jars (and acid sulfate soil samples) will be placed in insulated container/s with ice.

Samples will be transported to the relevant analytical laboratory, with chain of custody (COC) documentation that includes the following information:

- AG project identification number
- Each sample identifier
- Date each sample was collected
- Sample type (e.g. soil or water)
- Container type/s for each sample collected
- Preservation method used for each sample (e.g. ice)
- Analytical requirements for each sample and turnaround times
- Date and time of dispatch and receipt of samples (including signatures)

6.7.4. Decontamination

All sampling equipment used during the investigation consisted of location specific nitrile gloves, as such decontamination was deemed unnecessary. To avoid cross contamination via the auger, samples were collected from the centre of the soil formation, ensuring to avoid sampling materials which had come into contact with the auger.

6.7.5. Laboratory Selection

The analytical laboratories used for this project will be NATA accredited for the analysis undertaken.

6.7.6. Laboratory Analytical Schedule

Project samples will be scheduled for NATA accredited laboratory analysis, using a combination of:

- Observations made in the field of the media sampled; and
- The contaminants of potential concern (COPC) identified for the area of environmental concern that the sample was collected from.

Based on site history, AG has adopted the laboratory analytical schedule (and associated upper limiting quantities) presented in **Table 6.7.6** for this project.

6.7.7. Laboratory Holding Times, Analytical Methods and Limits of Reporting

The laboratory holding times, analytical methods and limits of reporting (LOR) being used for this project, are presented in **Table 6.7.7**.

Analyte	Holding Time	Analytical Method	Limit of Reporting (mg/kg)	
BTEX and TRH C ₆ -C ₁₀	14 days	USEPA 5030, 8260B and 8020	0.2-0.5	
TRH >C ₁₀ -C ₄₀	14 days	USEPA 8015B & C	20-100	
VOC	14 days	USEPA 8260	0.1-0.5	
РАН	14 days	USEPA 8270	0.1-0.5	
OCP	14 days	USEPA 8081	0.2	
Nitrate	28 days	APHA 4500	5.0	
Metals	6 months	USEPA 8015B & C	0.05 – 2	
Asbestos	No limit	AS4964:2004	Absence / presence	

Table 6.7.7 Laboratory Holding Times, Analytical Methods and Limits of Reporting

Analyte	Holding Time	Analytical Method	Limit of Reporting (mg/kg)
Asbestos	No limit	Inhouse Method	0.001% w/w

7. DETAILED SITE INVESTIGATION METHODOLOGY

Soil sampling and analysis were undertaken with reference to the following documents:

- NSW EPA 1995. Contaminated Sites Sampling Design Guidelines, NSW Environment Protection Authority.
- NEPM 1999. 'National Environment Protection (Assessment of Site Contamination) Measure. Schedule B (2) Guideline on Data Collection, Sample Design and Reporting.' National Environmental Protection Council, Adelaide.
- Standards Australia. 2005.' AS 4482.1. Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 1: Non-volatile and Semi-volatile Compounds.' <u>www.standards.com.au</u>.
- Standards Australia. 1999. 'AS 4482.2. Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile Compounds'. <u>www.standards.com.au</u>.
- Standards Australia. 1998. 'AS/NZS 5667.11:1998. Water Quality Sampling. Part 11: Guidance on Sampling of Groundwater.' <u>www.standards.com.au</u>.
- Standards Australia. 1998. 'AS/NZS 5667.1:1998. Water Quality Sampling. Part 1: Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples'. <u>www.standards.com.au</u>.
- ACS NEPM. 2013 National Environment Protection (Assessment of Site Contamination) Measure 2013 Schedule B (1) Investigation Levels for Soil and Groundwater.

7.1. Scope of Fieldworks

To clarify and quantify the existence of the potential contaminants, a sampling analysis and quality plan (SAQP) was developed. The site works were performed on the 21st May and 7th June 2019, in accordance with the SAQP and supervised by AG environmental scientists at all times.

The scope of the investigation was developed based upon the findings of the desktop investigation and the site walkover and the SAQP subsequently developed. Based upon this approach the following scope of works was performed:

- Completion of a site-specific Safe Work Method Statement in accordance with AG health and safety policy;
- Completion of eight (8) soil sampling locations (via intrusive boreholes);
- Collection of asbestos samples from any surface sample locations;
- Collection of discrete soil samples every 1.0 m recovered or change of strata from the test pits;
- Collection and analysis of quality assurance/quality control (QA/QC) samples in accordance with NEPM requirements; and
- Analysis of twenty-four (24) primary soil and four (4) quality control samples.

7.2. Soil Sampling Methodology

A total of eight (8) boreholes (BH01-BH08) are to be advanced across the site using a track mounted drill rig until a target depth of 2.0m or inferred natural soils. Samples for potential analysis were collected from the near surface, at 1.0 m interval within the soil profile or with change of strata, and in

areas of observed contamination. Each soil sample is to be collected using a new clean pair of nitrile gloves and placed in the appropriate sample containers provided by the laboratory.

The selection of samples for laboratory analyses will be based upon visual and olfactory observations. Soil jars are to be labelled with sample identification (sample location and depth), date and name of sampler.

Upon completion of the soil boreholes, the holes are to be backfilled with the drill cuttings.

Soil bore logs will be maintained in the field by an AG environmental scientist for all exploratory holes. Field observations such as lithology, odours, staining, depth of water etc. are to be noted on the logs.

7.3. Laboratory Analysis

All soil samples will be forwarded to a NATA accredited laboratory for analysis of the analytes listed below. Eurofins | Environment Testing shall be used for the analysis of primary samples and ALS for the analysis of interlaboratory samples.

8. FIELDWORK

8.1. Soil Sampling

Soil sampling was undertaken by AG on 21 May and 7 June 2019. A total of eight (8) boreholes (BH01-BH08) were advanced across the site using a track mounted excavator to a target depth of 2.0m bgl. Samples for potential analysis were collected from the near surface, at 1.0 m intervals within the soil profile or with change of strata, and in areas of observed contamination. Each soil sample was collected using a new clean pair of nitrile gloves and placed in the appropriate acid rinsed sample containers provided by the laboratory.

Upon completion of the soil boreholes, each location was backfilled with drill cuttings at the completion of the sampling task. Soil bore logs were maintained in the field by an AG environmental scientist for all exploratory holes. Field observations such as lithology, odours, staining, depth of water etc. were noted on the logs. The logs are presented within **Appendix C**.

Each sampling point established was marked on a site plan. The locations of these sampling points are presented in **Figure 3**.

Image 8.1.1 View of sampling technique as observed in BH08

8.2. Site Geology

Observations were made of soils encountered during sampling work. These observations were recorded on borehole logs. A copy of these logs is presented in **Appendix C**.

Anthropogenic materials observed in some of the fill material encountered included road base, bitumen, concrete and ceramic tiles.

Inferred natural material was encountered at three locations (BH01, BH02 and BH04), prior to the target depth of 2.0mbgl.

Image 8.2.1 Example of natural soils, as observed within BH01

8.3. Odours

Olfactory evidence of contamination was not detected in the soil samples collected during the investigation

8.4. Staining

Visual evidence of contamination was not detected in the soil samples collected during the investigation.

8.5. Potential Asbestos Containing Materials

Visual evidence of potential asbestos containing materials (ACM) was observed in BH06, BH07 and BH08 at depths beneath 0.3m. The materials were observed to be in fair to poor condition.

Although no record of asbestos contamination was listed on the Section 10.7 certificates associated with the site, based on the quantity and depth of the potential ACM as well as geofabric materials noted during the borehole drilling, there is a possibility that the area characterised by BH06, BH07 and BH08 is an area of capped asbestos contamination.

Image 8.5.1 View of potential asbestos containing materials (ACM) as observed in BH06

9. LABORATORY ANALYSIS

The samples collected were transported to the analytical laboratory, using chain of custody (COC) protocols. A selection of these samples was scheduled for analysis, with reference to the relevant COPC identified for the AEC that the samples were collected from.

All soil and groundwater samples were forwarded to the NATA accredited laboratory for analysis of the analytes listed below. Eurofins | Mgt were used for the analysis of primary samples and SGS for the analysis of interlaboratory samples.

Table 9.1 Details the analysis undertaken for soil samples.

Table 9.1 Soil Analytical Schedule

	Analytical Suite								
Sample ID	ТКН	ВТЕХ	РАН	Heavy Metals (As, cd, cr, cu, Hg, Ni, Pb, Zn)	Asbestos ID	OCPs	PCBs	рН-рНFОХ	pH + CEC
BH05-0.1, BH04-0.1, BH03-0.1, BH01-0.1	х	х	х	х	х	x	x		
BH07-2.0	х	х	х	x	х	х	х	х	
BH08-0.1	х	х	х	x		х	х		
BH08-1.0,			х	х	х			х	
BH07-0.1,	х	х	х	х					
BH02-0.1, BH02-1.0, BH06-2.0, BH06-0.1, BH08-2.0,	х	х	х	х	х				
BH04-2.0, BH05-2.0,	х	х	х	х	х			х	
BH07-1.0,			х	х	х				
BH06-1.0,			х	х				х	
BH01-1.5				х				х	x
BH01-1.0, BH03-1.0,	х	х		х	Х				
BH02-2.0, BH04-1.0, BH05-1.0,			х	х					
BH03-2.5								х	
BD1, SD1	х			х					
Trip Blank, Trip Spike	х	х							

A copy of the analytical laboratory certificates of analysis, is presented in Appendix D.

The sample analytical results were tabulated and presented in the attached **Table LAR1, LAR2** and **LAR3**.

10. DATA QUALITY INDICATOR ASSESSMENT

10.1. Completeness

An assessment of the completeness of data collected was undertaken, and the results presented in **Table 10.1**.

Field Considerations	Target	Actual	Comment
Critical locations sampled	18	8	Performance against indicator considered acceptable.
Critical samples collected	25	25	Performance against indicator considered acceptable.
SOPs appropriate and complied with	100%	100%	Performance against indicator considered acceptable.
Field documentation complete		All sampling point logs, calibration logs and chain of custody forms	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Critical samples analysed according to DQO	Refer Section 6.7.6	Refer Section 5.7.7	Performance against indicator considered acceptable.
Analytes analysed according to DQO	Refer Section 6.7.6	100%	Performance against indicator considered acceptable.
Appropriate laboratory analytical methods and LORs	Refer Section 6.7.7	100%	Performance against indicator considered acceptable.
Sample documentation complete	All sample receipt advices, all certificates of analysis	100%	Performance against indicator considered acceptable.
Sample extraction and holding times complied with	Refer Section 6.7.7	Refer comments	Performance against indicator considered acceptable.

The data collected is considered to be adequately complete within the objectives and constraints of the project.

10.2. Comparability

An assessment of the comparability of data collected was undertaken, and the results presented in **Table 10.2**.

Table 10.2 Comparability DQI Field Considerations Target Actual Comment					
	Target	Actual	Comment		
Same SOPs used on each occasion	100%	100%	Performance against indicator considered acceptable.		
Climatic conditions	Samples stored in insulated containers with ice, immediately after collection	100%	Performance against indicator considered acceptable.		
Same types of samples collected, and handled/preserved in same manner	All soil samples same size, all stored in insulated containers with ice	100%	Performance against indicator considered acceptable.		
Laboratory Considerations	Target	Actual	Comment		
Same analytical methods used by primary laboratory	Refer Section 6.7.7	100%	Performance against indicator considered acceptable.		
Same LORs at primary laboratory	Refer Section 6.7.7	100%	Performance against indicator considered acceptable.		
Same laboratory for primary sample analysis	All primary samples to Eurofins mgt	100%	Performance against indicator considered acceptable.		
Same analytical measurement units	Refer Section 6.7.7	100%	Performance against indicator considered acceptable.		

The data collected is considered to be adequately comparable within the objectives and constraints of the project.

10.3. Representativeness

An assessment of the representativeness of data collected was undertaken, and the results presented in **Table 10.3**.

Table 10.3 Representativeness DQI					
Field Considerations	Target	Actual	Comment		
Appropriate media sampled according to DQO	Refer Section 6.7.2	100%	Performance against indicator considered acceptable.		
Media identified in DQO sampled	Refer Section 6.7.2	100%	Performance against indicator considered acceptable.		
Laboratory Considerations	Target	Actual	Comment		
Samples analysed according to DQO	Refer Section 6.7.6	Refer comments	Performance against indicator considered acceptable.		

The data collected is considered to be adequately complete within the objectives and constraints of the project.

10.4. Precision

An assessment of the precision of data collected was undertaken, and the results presented in **Table 10.4**.

Field Considerations	Target	Actual	Comment
Field duplicate / triplicate RPD	Minimum 5% duplicates and triplicates	5 % duplicates and 5 % triplicates	Parent duplicate/triplicate relationships are as follows:
			BD1/SD1- BH03-1.0
	No limit for analytical results <10 times LOR	Nil	Only RPD exceeding 50% was less than 5 times the LOR. Performance against indicator was considered acceptable.
	50% for analytical results 10-20 times LOR	Nil	
	30% for analytical results >20 times LOR	Nil	
SOPs appropriate and complied with	100%	100%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Laboratory duplicates No exceedances of laboratory acceptance criteria		No exceedances	Performance against indicator considered acceptable.

The data collected is considered to be adequately precise within the objectives and constraints of the project.

10.5. Accuracy

An assessment of the precision of data collected was undertaken, and the results presented in **Table 10.5**.

Laboratory Considerations	Target	Actual	Comment
Laboratory method blank	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Matrix spike recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Surrogate spike recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Laboratory control sample recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.

The data collected is considered to be adequately accurate within the objectives and constraints of the project.

11. DISCUSSION

A discussion on comparison of laboratory analytical results and field observations, in the context of the assessment criteria adopted for this project, is presented in **Sections 11.1** to **11.4**. Refer to **Figure 3** for sample locations exceeding adopted criteria.

11.1. Human Health - Direct Contact (HIL – C Public Open Space)

<u>TRH</u>

Sixteen (16) soil samples were analysed for TRH. The concentrations of TRH C₆-C₁₀, >C₁₀-C₁₆, >C₁₆-C₃₄ and >C₃₄-C₄₀ detected in the soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria. Eight (8) of the samples recorded concentrations of TRH fractions F3 and F4 that were below the adopted HSL criteria. The results are summarised below:

Sample ID/	ary of TRH results TRH C16-C34 (F3) (mg/kg)	TRH C ₃₄ -C ₄₀ (F4) (mg/kg)
Depth (m)	HSL Criteria: 1,300 mg/kg	HSL Criteria: 10,000 mg/kg
BH3/ 0.1	660	130
BH3/ 1.0	460	<100
BH4/ 0.1	210	<100
BH5/ 0.1	360	140
BH5/ 2.0	500	150
BH7/ 0.1	170	<100
BH7/ 2.0	290	<100
BH8/ 2.0	280	<100

<u>BTEX</u>

The results of benzene, toluene, ethyl benzene and xylenes (BTEX) were below laboratory detection levels.

<u>PAHs</u>

The concentrations of naphthalene detected in the soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria.

A total of twenty (20) soil samples were analysed for PAHs. Seven (7) of the samples recorded concentrations of benzo(a)pyrene TEQ above the detection level, five (5) of which recorded

concentrations above the adopted criteria. Total PAHs concentrations recorded were all below the adopted criteria. The results have been summarised in **Table 11.2**.

Table 11.2 Summary of PAH results		
Sample ID/ Depth (m)	Carcinogenic PAHs, Benzo(a)Pyrene TEQ (mg/kg)	Total PAHs (mg/kg)
	HIL Criteria: 3mg/kg	HIL Criteria: 300mg/kg
BH2/ 0.1	1.6	12.3
*BH3/ 0.1	30	275.3
BH4/ 0.1	3.1	26.2
BH5/ 0.1	4.1	26.6
BH5/ 1.0	15	111.9
*BH5/ 2.0	10	69.9
BH7/ 0.1	2.2	17.1

*Note: PAH correlation coefficients retrieved from <u>www.pahsourceanalyst.com.au</u>

Given the concentrations detected were >250% of the adopted site criteria, statistical analysis via 95% Upper Confidence Limit (UCL) calculations could not be completed.

Based on review of the PAH results and PAH correlation coefficients retrieved from www.pahsource analyst.com.au for selected samples exceeding the adopted criteria, and visual observations onsite, it is likely that the materials contain 'ash from black and brown coal' and 'coke'. A copy of the data assessment summary sheet in provided in **Appendix E**.

<u> 0CP</u>

The concentration of relevant OCP compounds detected in the soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria or less than laboratory limits of reporting. Most samples were all below laboratory detection levels, with the exception of soil sample BH4 (0.1) m, which recorded DDE concentration of 0.77mg/kg.

PCBs

The concentration of PCBs detected in the soil samples analysed, were less than laboratory limits of reporting.

Heavy Metals

The concentrations of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury detected in the soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria.

Asbestos Fines/ Friable Asbestos (AF/FA)

A total of sixteen (16) samples were analysed for Asbestos (absence/presence) and five (5) samples recorded asbestos. The results of asbestos detected samples are summarised in Table 11.3.

Sample ID/ Depth (m)	Result	Comments	
BH2/ 1.0 (soil)	0.00019 % w/w	AF/FA	
BH8/ 1.0 (fragment)	Chrysotile and amosite asbestos	-	
BH8/ 2.0 (fragment)	Chrysotile and amosite asbestos	-	
BH7/ 2.0	Chrysotile and amosite asbestos	-	
BH6/ 0.1 (soil)	0.34 % w/w	Bonded	

T-1-1- 44 0 0 of ophoptop waryld

Asbestos was not detected in any of the other samples analysed.

11.2. Human Health – Inhalation / Vapour Intrusion (Public Open Space)

<u>TRH</u>

The concentrations of TRH C_6 - C_{10} (minus BTEX) and > C_{10} - C_{16} (minus naphthalene) detected in the soil samples analysed, were below laboratory detection levels.

BTEX

The concentrations of benzene, toluene, ethyl benzene and xylenes detected in the soil samples analysed, were below laboratory detection levels.

PAHs

The concentrations of naphthalene detected in the soil samples analysed, were below laboratory detection levels.

11.3. TRH Management Limits (Public Open Space)

The concentrations of TRH C₆-C₁₀, >C₁₀-C₁₆, >C₁₆-C₃₄ and >C₃₄-C₄₀ detected in the soil samples analysed were less than the applicable adopted TRH management limits or less than laboratory limits of reporting.

11.4. Aesthetics

There was significant evidence of foreign materials including ACM identified within BH06-BH08. The aesthetics assessment criteria adopted for this project, indicate that further assessment/management is required.

11.5. Terrestrial Ecosystems

Ecological Screening Levels (ESLs)

Due to the heterogeneity of the fill material encountered during AG investigation, it was not practical to analyse all soil samples for the specific analytes required (CEC and clay content) and therefore generic EILs have been adopted from CRC CARE 2017.

The concentrations of all analytes detected in the soil samples analysed were below less than the applicable adopted site criteria for the site EIL/ESL with the exception of Benzo(a)Pyrene. A summary of the EIL/ ESL exceedances for Benzo(a)pyrene (B(a)P) and the associated adopted criteria are presented in below **Table 11**.

Table 11.4 Summary of EIL		Result	ESL Criteria
Sample ID/ Depth (m)	Analyte	(mg/kg)	(mg/kg)
BH2/ 0.1	Benzo(a)Pyrene	1.2	0.7
BH3/ 0.1	Benzo(a)Pyrene	21	0.7
BH4/ 0.1	Benzo(a)Pyrene	2.3	0.7
BH5/ 0.1	Benzo(a)Pyrene	2.6	0.7
BH5/ 1.0	Benzo(a)Pyrene	9.6	0.7
BH5/ 2.0	Benzo(a)Pyrene	6.5	0.7
BH7/ 0.1	Benzo(a)Pyrene	1.7	0.7

Table 11.4 Summary of EIL/ ESL exceedances

AG considers that, although the results reported are above the ASC NEPC 2013 ESL/EIL, the CRC CARE Technical Report 39 on Risk-based management and remediation guidance for benzo(a)pyrene (2017) states that:

"...the ESLs in the NEPM are classified as low reliability, it is useful to consider whether there is additional and more recent information that allows higher reliability values to be estimated. Note that values derived in this way are intended to assist in informing an assessment of B(a)P following NEPM ecological risk assessment guidelines, but as they have not been developed through the NEPM review process, they should not be cited as NEPM ESLs."

Therefore, AG considers that since the NEPM ESL values for (B(a)P) are considered to be conservative and of low reliability, it is possible to adapt a conservative higher reliability ecological

guideline for the site for fresh B(a)P as per the CRC CARE (2017) guidelines. **Table 11** below has been extracted from CRC CARE Technical Report 39 (2017):

Land use	% protection	Derived ecological guideline (95% confidence limits) mg/kg	NEPM low reliability ESL mg/kg	Canadian SQGE
Commercial and industrial	65	172 (57–371) (High reliability)	1.4	72
Urban residential and public open space	85	33 (21–135) (High reliability)	0.7	20
National parks/areas with high ecological values	99	0.2 (0.1–21) (High reliability)	0.7	NA

SQG_E = soil quality guidelines for environmental health (CCME 2010).

AG considers the ecological screening level value detailed in **Table 11.5.2** above for urban residential and public open space sites (33 mg/kg) to be more accurate for characterisation of the site. Using the CRC CARE (2017) adapted screen level, all samples analysed for B(a)P are below the applicable site screening level.

As such, AG considers that further assessment is not required.

Ecological Investigations Levels (EILs)

The concentrations of relevant contaminants of concern detected in the soil samples analysed were less than the applicable adopted site-specific ecological investigation levels (EIL) with the exception of copper, nickel and zinc.

Soil samples BH1 (0.1) m, BH2 (0.1) m, BH3 (0.1) m and BH3 (1.0)m recorded Nickel concentrations of 40mg/kg, 44mg/kg, 49mg/kg and 34mg/kg, respectively, exceeding the adopted site assessment criteria of 35mg/kg. The detected concentrations of Nickel were further subjected to a statistical analysis using the US EPA Pro Upper Confidence Limit (UCL) 95%. Following the UCL 95% analysis, all samples analysed were deemed suitable under the adopted site assessment criteria.

Soil samples BH7 (1.0) m and BH7 (2.0) m recorded Copper concentrations of 820mg/kg and 230mg/kg, respectively, exceeding the adopted site assessment criteria of 102mg/kg. The detected concentrations of Copper could not be risked away using the US EPA Pro Upper Confidence Limit (UCL) 95%, as the concentration were greater than 250% of the adopted criteria.

Soil samples BH2 (0.1)m, BH2 (1.0)m, BH3 (0.1)m, BH3 (1.0)m, BH7 (0.1)m and BH7 (1.0)m recorded Zinc concentrations of 900mg/kg, 290mg/kg, 400mg/kg, 260mg/kg, 270mg/kg and 760mg/kg respectively, exceeding the adopted site assessment criteria of 239mg/kg. The detected concentrations of Zinc could not be risked away using the US EPA Pro Upper Confidence Limit (UCL) 95%, as the concentration were greater than 250% of the adopted criteria.

12. CONCLUSIONS AND RECOMMENDATIONS

Based on AG's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, AG makes the following conclusions:

- The detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present:
 - o An unacceptable inhalation / vapour intrusion human health exposure risk; or
 - o An unacceptable petroleum management limit risk.
- The detected concentrations of benzo(a)pyrene TEQ in the soils assessed present a direct contact human health exposure risk, at sampling locations BH3-0.1, BH4-0.1, BH5-0.1, BH5-1.0 and BH5-2.0;
- Asbestos was detected within four (4) of the eight (8) locations sampled (BH02, BH06, BH07 and BH08), and is considered to present an unacceptable human health exposure risk during the future intrusive/redevelopment works, in these locations;
- Ecological Investigation Levels were exceeded for Copper at sampling location BH7 and Zinc at sampling locations BH2, BH3 and BH7. As such, may present an unacceptable ecological exposure risk during the future intrusive/redevelopment works, in these locations;
- As the majority of the site is covered by hardstand materials and landscaped areas, and that the detected contaminants in soil were located at depth and will not be disturbed until commencement of redevelopment works, AG considers that there is no immediate human health risk to occupants of surrounding areas, as well as nearby pedestrians; and
- Based on the assessments undertaken as part of this investigation, AG has concluded that the site can be made suitable for the proposed redevelopment pending supplementary contamination assessment and subsequent remediation of the aforementioned exceedances of the adopted site assessment criteria.

Based on these conclusions, AG makes the following recommendations:

- A supplementary contamination assessment should be carried out to determine the extent of contamination within areas of detected contamination, with regard to the asbestos and PAH contamination. The PAH concentrations exceeding the adopted criteria are likely associated with black/ brown coal and coke and may pose an unacceptable exposure risk via direct contact, ingestion and inhalation. Considerations should be given to further assessment of soils for the leachability characteristics of the PAH soil contamination and assessment of groundwater that may have been potentially impacted by the overlying fill materials. An appropriate asbestos assessment should be completed in accordance with WA DOH 2009 with considerations should be made to allow for test pit exploration excavations, in order to adequately quantify the asbestos exposure risk;
- Remediation will require the completion of a Remedial Action Plan (RAP) detailing the works
 required to adequately delineate, remediate and validate the areas of identified
 contamination;
- Following remediation of the identified contamination, validation sampling and a site validation report will be required to confirm the effectiveness of the remedial works;
- Investigation of Acid Sulfate Soils (ASS) for any soil proposed for excavation / disposal at or below 2.0 metres bgl; and
- Any soil proposed for disposal should be classified and disposed of as per the NSW EPA *Waste Classification Guidelines 2014.*

This report, including its conclusions and recommendations, must be read in conjunction with the limitations presented in **Section 13**.

13. STATEMENT OF LIMITATIONS

The findings presented in this report are based on specific searches of relevant, government historical databases and anecdotal information that were made available during the course of this investigation. To the best of our knowledge, these observations represent a reasonable interpretation of the general condition of the site at the time of report completion.

This report has been prepared solely for the use of the client to whom it is addressed and no other party is entitled to rely on its findings.

No warranties are made as to the information provided in this report. All conclusions and recommendations made in this report are of the professional opinions of personnel involved with the project and while normal checking of the accuracy of data has been conducted, any circumstances outside the scope of this report or which are not made known to personnel and which may impact on those opinions is not the responsibility of Alliance Geotechnical Pty Ltd. Should information become available regarding conditions at the site including previously unknown sources of contamination, AG reserves the right to review the report in the context of the additional information.

This report must be reviewed in its entirety and in conjunction with the objectives, scope and terms applicable to AG's engagement. The report must not be used for any purpose other than the purpose specified at the time AG was engaged to prepare the report.

Logs, figures, and drawings are generated for this report based on individual AG consultant interpretations of nominated data, as well as observations made at the time site walkover/s were completed.

Data and/or information presented in this report must not be redrawn for its inclusion in other reports, plans or documents, nor should that data and/or information be separated from this report in any way.

Should additional information that may impact on the findings of this report be encountered or site conditions change, AG reserves the right to review and amend this report.

14. REFERENCES

National Environment Protection Council (NEPC) 1999a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

National Environment Protection Council (NEPC) 1999b, 'Schedule B(2) Guideline on Site Characterisation, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

NSW DEC 2006, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)'.

NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines'.

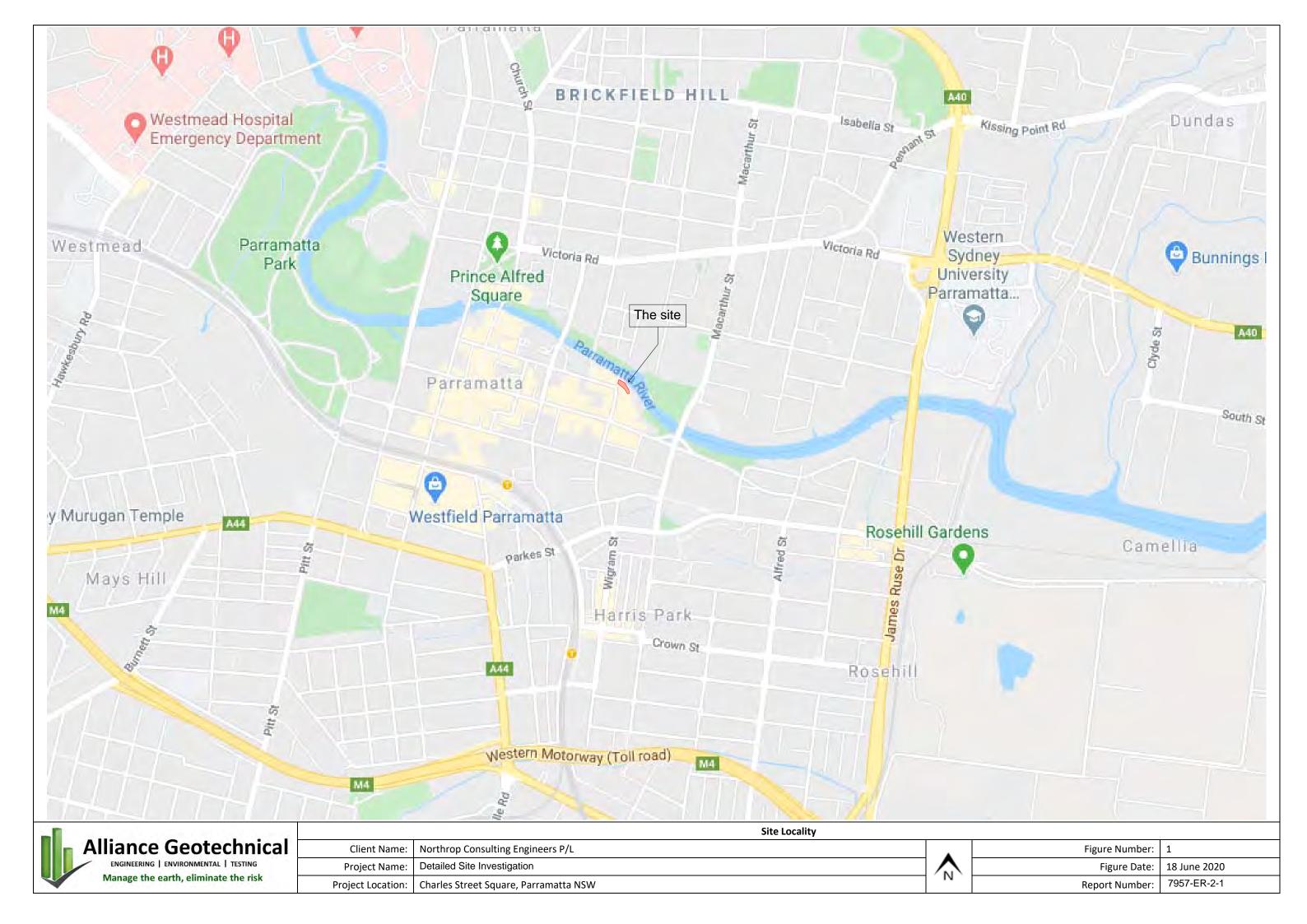
NSW EPA 2012, 'Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases'

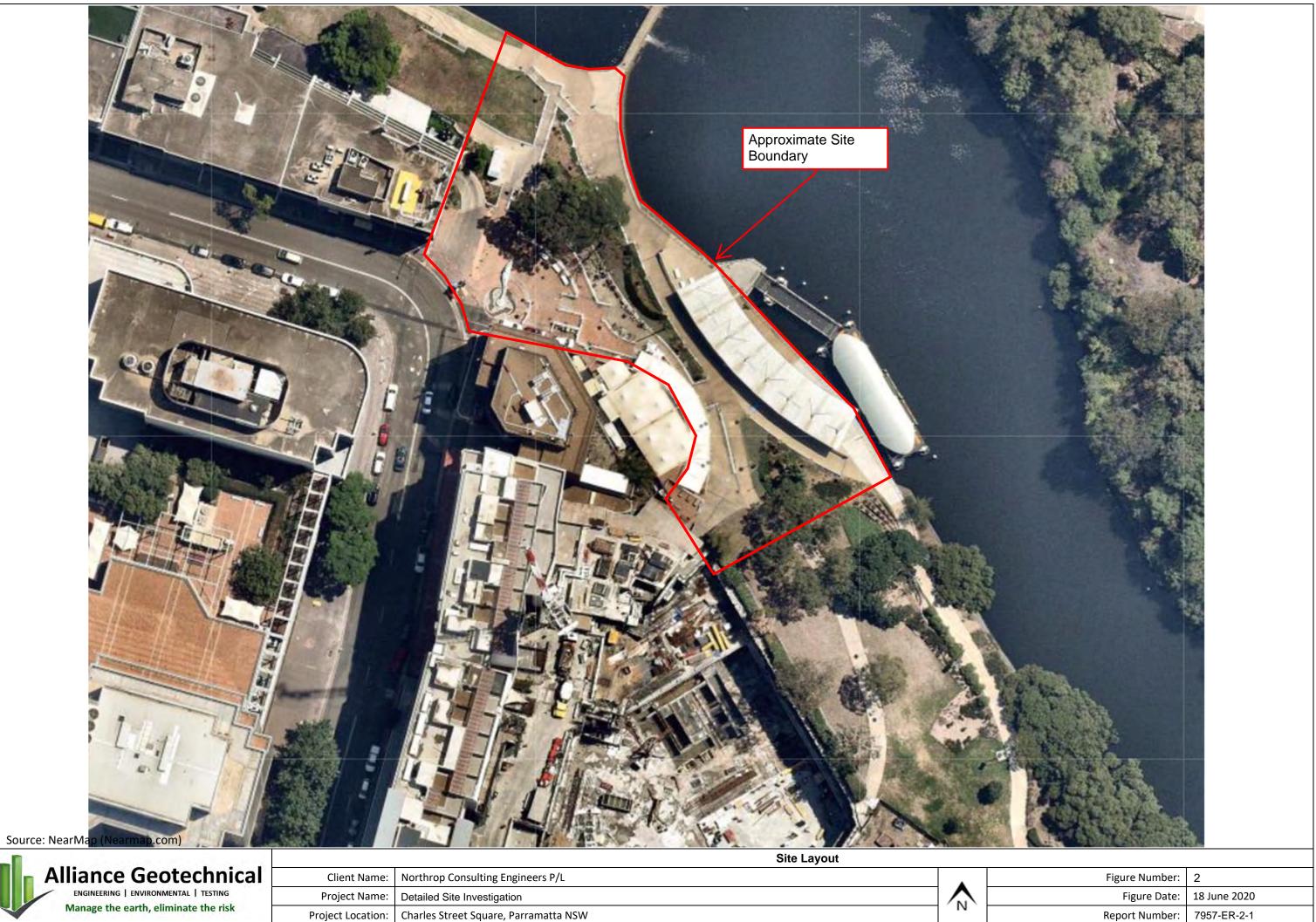
NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

WA DOH 2009, 'Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia' dated May 2009.

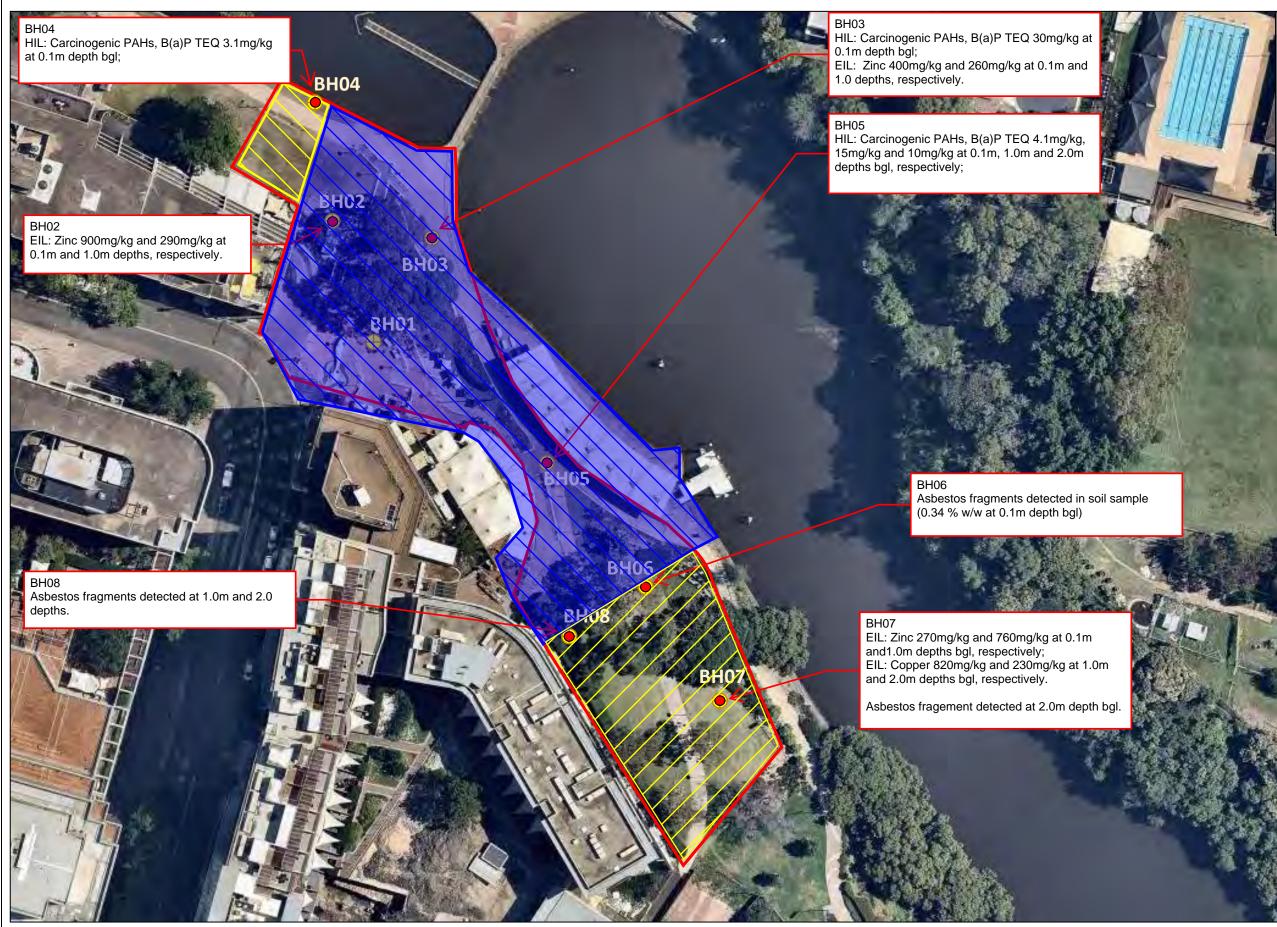
Department of Environment and Climate Change NSW, 'Managing Dry Cleaning Waste for a Safer Environment' dated January 2009

Standards Australia. 2005.' AS 4482.1. Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 1: Non-volatile and Semi-volatile Compounds.' <u>www.standards.com.au</u>.


Standards Australia. 1999. 'AS 4482.2. Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile Compounds'. <u>www.standards.com.au</u>.


Standards Australia. 1998. 'AS/NZS 5667.11:1998. Water Quality – Sampling. Part 11: Guidance on Sampling of Groundwater.' <u>www.standards.com.au</u>.

Standards Australia. 1998. 'AS/NZS 5667.1:1998. Water Quality – Sampling. Part 1: Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples'. <u>www.standards.com.au</u>.


CRC CARE 2017, 'Risk-based management and remediation guidance for benzo(a)pyrene, CRC CARE Technical Report no. 39, CRC for Contamination Assessment and Remediation of the Environment, Newcastle, Australia'.

SITE FIGURES

_			Site Layout		
	Alliance Geotechnical	Client Name:	Northrop Consulting Engineers P/L	•	
	ENGINEERING ENVIRONMENTAL TESTING	Project Name:	Detailed Site Investigation		
V	Manage the earth, eliminate the risk	Project Location:	Charles Street Square, Parramatta NSW	IN IN	

Exceedances Recorded

-						
	Alliance Geotechnical 🗌	Client Name:	Northrop Consulting Engineers P/L		Figure Number:	3
	ENGINEERING ENVIRONMENTAL TESTING	Project Name:	Stage 2 Detailed Site Investigation		Figure Date:	15 June 2020
	Manage the earth, eliminate the risk	Project Location:	Charles Street Square, Parramatta, NSW	IN	Report Number:	7957-ER-2-1

LEGEND

Lateral extent of Site Boundary Assessed during DSI Investigation

Updated lateral extent of Site Boundary after draft RAP submission (provided by client

Areas previously assess that are outside of the updated lateral extent of the site

TABLES

Soil Result	eet Square, Parramatta NSW s & Adopted Site Criteria										Sample ID Reference Date Sampled Sample Matrix		BH01-0.1 S19-Jn08524 7/6/2019 Soil		BH01-1.5 S19-Jn08526 7/6/2019 Soil	BH02-0.1 \$19-Jn08527 7/6/2019 Soil	BH02-1.0 S19-Jn08528 7/6/2019 Soil	\$19-Jn08529 7/6/2019	7/6/2019		21/5/2019	BH04-1.0 S19-My38770 21/5/2019 Soil		BH05-0.1 S19-My38766 21/5/2019 Soil	21/5/2019	BH05-2.0 S19-My38768 21/5/2019 Soil	BH06-0.1 S19-My38763 21/5/2019 Soil		S19-My38765	BH07-0.1 S19-My38759 21/5/2019 Soil	BH07-1.0 S19-My38760 21/5/2019 Soil	BH07-2.0 S19-My38761 21/5/2019 Soil		BH08-1.0 S19-My38757 21/5/2019	BH08-2.0 S19-My38758 21/5/2019
7957-ER-2	1			Screening Levels for Direct Contact (mg/kg) CRC Care 2011	Inhalation (mg/kg	/ Vapour Intrusion HSLs ;) - NEPC 2013 (CLAY)	Management Limits fo TPH Fractions F1 - F4 i soil (mg/Kg) - NEPC 2013	ESLs for TPH Fractions F1 - F BTEX and Benzo(a)pyren	F4, Ecological Investigation Levels (EILs) in soil ne - (mg/Kg)	Health Investigation Levels for Soil Contaminants - NEPC 2013			Soil	Soil	Soil	Soil	Sol	Soil	Soil	Soll	Soil	Soil	Soll	Soll	Soil	Soil	Soll	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Group	Analyte	Units	PQL	HSL - C Recreational /	HSL recreatio		Residential, Parkland and Public Open Spac	Urban Residential an Public Open Space	urban Residential Publi Open Space	lic	Data Set Minimun	n Data Set Maximum																							
				open space	0 m to <1 r	Concentration (Csa	Fine Soil Texture	Fine Soil Textu	ure Site Specific Criteria	Public open space																									
	Arsenic, As	mg/kg						-	100	900		85	2.9	4.5	2.4	13	3	62	30	23	5.4	3.3	<2	6.1	85	5.9	5.3	3.8	3.2	5.4	10	6.8	6	6.8	5.9
	Cadmium, Cd Chromium, Cr	mg/kg mg/kg	5.0						412	90		85	< 0.4	< 0.4	< 0.4 12	2.9	< 0.4 9.2	< 0.4 9.5	0.9 39	0.5 29	< 0.4 19	< 0.4 8.7	< 0.4	< 0.4 19	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4 7.6	< 0.4	2.8 18	1 85	< 0.4 9.1	0.4	0.4
Metals	Copper, Cu Lead, Pb	mg/kg mg/kg	5.0						102	17,000	7	820 260	31	19 13	6.9 6.5	57 140	13 170	19 23	90 260	54 170	59 87	23	8.5 7.2	32 83	14 110	16	33	34	21	57	820 230	230	31 54	30 88	27
	Mercury (inorganic)	mg/kg	0.10		-			-		80	0	0	< 0.1	< 0.1	< 0.1	0.3	0.2	< 0.1	0.1	< 0.1	0.1	0.1	< 0.1	0.1	0.2	0.2	0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	0.1	0.1
	Nickel, Ni Zinc, Zn	mg/kg mg/kg	5.0						35 239	1200	6	49 900	40 39	16 21	<5	44 900	6.4 290	< 5 32	49 400	34 260	28 180	6.1 100	< 5	15 220	8.2 59	6.4 85	11 120	17	6.6 110	19 270	24 760	34	7.1	9.6 140	11 120
	Acenaphthene	mg/kg	0.5		•				•		1	1	< 0.5			< 0.5	< 0.5	< 0.5	1.4		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene Anthracene	mg/kg mg/kg									1	2	< 0.5			< 0.5	< 0.5	< 0.5	2 7.2		< 0.5	< 0.5	< 0.5	< 0.5	1.8	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)anthracene	mg/kg	0.5					-			1	17	< 0.5			1.1	< 0.5	< 0.5	17		2.4	< 0.5	< 0.5	2.2	11	5.6	< 0.5	< 0.5	< 0.5	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg TEQ (mg/kg</td><td></td><td></td><td></td><td>-</td><td></td><td>0.7</td><td></td><td></td><td>2</td><td>21</td><td>< 0.5</td><td></td><td></td><td>1.2 1.6</td><td>< 0.5</td><td>< 0.5</td><td>21 30</td><td></td><td>2.3 3.1</td><td>< 0.5</td><td>< 0.5</td><td>2.6</td><td>9.6 15</td><td>6.5 10</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>1.7</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td></lor=0<>	mg/kg TEQ (mg/kg				-		0.7			2	21	< 0.5			1.2 1.6	< 0.5	< 0.5	21 30		2.3 3.1	< 0.5	< 0.5	2.6	9.6 15	6.5 10	< 0.5	< 0.5	< 0.5	1.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg</td><td>g) 0.5</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td>30</td><td>0.6</td><td></td><td></td><td>1.9</td><td>0.6</td><td>0.6</td><td>30</td><td></td><td>3.3</td><td>0.6</td><td>0.6</td><td>4.1</td><td>15</td><td>10</td><td>0.6</td><td>0.6</td><td>0.6</td><td>2.5</td><td>0.6</td><td>0.6</td><td>0.6</td><td>0.6</td><td>0.6</td></lor=lor<>	TEQ (mg/kg	g) 0.5		-			-			1	30	0.6			1.9	0.6	0.6	30		3.3	0.6	0.6	4.1	15	10	0.6	0.6	0.6	2.5	0.6	0.6	0.6	0.6	0.6
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<br="">Benzolb&ilfluoranthene</lor=lor>	TEQ (mg/kg mg/kg	g) 0.5 0.5								1	30 13	1.2			2.1	1.2	< 0.5	30 13		3.6 1.8	1.2	1.2	4.1	15 6.1	10	1.2	1.2	1.2	2.7	1.2	1.2	1.2	1.2	1.2
РАН	Benzo(ghi)perylene	mg/kg	0.5		-			-			1	16	< 0.5			0.9	< 0.5	< 0.5	16		1.3	< 0.5	< 0.5	1.8	5.5	4.3	< 0.5	< 0.5	< 0.5	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene Chrysene	mg/kg mg/kg									1	16 17	< 0.5			1.2	< 0.5	< 0.5	16 17		1.9	< 0.5	< 0.5	1.9	8.6 9.8	5.1	< 0.5	< 0.5	< 0.5	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenzo(ah)anthracene	mg/kg	0.5			-		-		-	1	3	< 0.5			< 0.5	< 0.5	< 0.5	2.6		< 0.5	< 0.5	< 0.5	0.6	2	1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg mg/kg				- ·						56	< 0.5			2.2	< 0.5	< 0.5	56 3.6		5.5 < 0.5	< 0.5	< 0.5	4.9 < 0.5	21 < 0.5	13 < 0.5	< 0.5	< 0.5	< 0.5	3.4 < 0.5	< 0.5	0.6	< 0.5	0.7	< 0.5
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5							-	1	12	< 0.5			0.7	< 0.5	< 0.5	12		1.1	< 0.5	< 0.5	1.6	4.8	3.8	< 0.5	< 0.5	< 0.5	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene Phenanthrene	mg/kg	0.5	1,900	NL	10		-	170		2	2 38	< 0.5			< 0.5	< 0.5	< 0.5	1.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Pyrene	mg/kg mg/kg	0.5					-		-	1	51	< 0.5			2.2	< 0.5	< 0.5	51		4.8	< 0.5	< 0.5	4.5	21	12	< 0.5	< 0.5	< 0.5	3.3	< 0.5	0.6	< 0.5	0.7	< 0.5
	Total PAH (18) TRH C10-C36 Total	mg/kg	0.5					-		300	1 106	275 849	< 0.5 < 50			12.3 < 50	< 0.5	< 0.5	275.3 849		26.2 274	< 0.5	< 0.5	26.6 467	111.9	69.9 570	< 0.5	< 0.5	< 0.5	17.1 198	< 0.5	1.2	< 0.5	1.4	< 0.5 315
	TRH C10-C14	mg/kg mg/kg										37	< 20	< 20		< 20	< 20		29	28	27		< 20	37		< 20	< 20		< 20	< 20		< 20	< 20		< 20
	TRH C15-C28 TRH C29-C36	mg/kg						-		-	50		< 50 < 50	< 50		< 50	< 50		560 260	400	160 87		< 50	220		300 270	50 56		< 50	110 88		190 140	< 50		220 95
	TRH C29-C36 TRH C6-C9	mg/kg mg/kg									0		< 20	< 20		< 20	< 20		< 20	< 20	< 20		< 50	< 20	-	< 20	< 20		< 50	< 20		< 20	< 50		< 20
TRH	Naphthalene TRH >C10-C16 (F2)	mg/kg	0.5	1,900	NL	10	•		170	-	0	0	< 0.5	< 0.5		< 0.5	< 0.5		< 0.5	< 0.5	< 0.5		< 0.5	< 0.5		< 0.5	< 0.5		< 0.5	< 0.5		< 0.5	< 0.5		< 0.5 < 50
	TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg		3,800	NL	560	1,000	120			0	0	< 50	< 50		< 50	< 50		< 50	< 50	< 50		< 50	< 50		< 50	< 50		< 50	< 50		< 50	< 50		< 50
	TRH C10-C40 Total (F bands) TRH >C16-C34 (F3)	mg/kg mg/kg		5,300			. 3.500			-	170	790	< 100 < 100	< 100		< 100 < 100	< 100 < 100		790 660	460 460	210 210		< 100 < 100	500 360		650 500	< 100 < 100		< 100	170 170		290 290	< 100 < 100		280 280
	TRH >C10-C34 (FS) TRH >C34-C40 (F4)	mg/kg		7,400			3,500	5,600			170		< 100	< 100		< 100	< 100		130	< 100	< 100		< 100	140		150	< 100		< 100	< 100		< 100	< 100		< 100
	TRH C6-C10 TRH C6-C10 minus BTEX (F1)	mg/kg	20	5.100	-	-		-		-	0	0	< 20 < 20	< 20		< 20	< 20		< 20	< 20	< 20		< 20	< 20		< 20	< 20		< 20	< 20		< 20	< 20		< 20 < 20
	Benzene	mg/kg mg/kg	0.1		NL		800	180				0	< 20	< 20		< 20	< 20		< 20	< 20	< 20		< 20	< 20		< 20	< 20		< 20	< 20		< 20	< 20		< 20
	Ethylbenzene	mg/kg	0.1	5,300	NL	68		125		-	0	0	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1
BTEX	m/p-xylene o-xylene	mg/kg mg/kg	0.2								0		< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2		< 0.1
	Toluene	mg/kg	0.1	1,800	NL NL			105		•	0		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1	< 0.1		< 0.1 < 0.3
 	Total Xylenes 4.4 - DDD	mg/kg mg/kg	0.05		-	330		45			0	0	< 0.05						< 0.05		< 0.05	-		< 0.05	-		~ U.5					< 0.05	< 0.05		~ 0.3
	4.4 - DDE 4.4 - DDT	mg/kg	0.05						-		1		< 0.05			-			< 0.05		0.77		-	< 0.05	-							< 0.05	< 0.05		
	4.4 - DDT a - BHC	mg/kg	0.05			-					0		< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Aldrin	mg/kg	0.05			•	•				0	0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Aldrin + Dieldrin (total) b - BHC	mg/kg mg/kg								- 10	0		< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Chlordanes (total)	mg/kg	0.05	-		•				70	0	0	< 0.1						< 0.1		< 0.1			< 0.1								< 0.1	< 0.1		
	d - BHC DDT + DDE + DDD (total)	mg/kg mg/kg	0.05	-				-		- 400	0	0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Dieldrin	mg/kg	0.05					· ·		•		0	< 0.05						< 0.05		< 0.05			0.08	-							< 0.05	< 0.05		
OCP	Endosulfan 1 Endosulfan 2	mg/kg mg/kg			-						0	0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
UCP	Endosulfan sulphate	mg/kg	0.05					-			0		< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Endrin Endrin Aldehyde	mg/kg mg/kg								- 20	0	0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Endrin Ketone	mg/kg	0.05	100 A								0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	g-BHC (Lindane) Heptachlor	mg/kg mg/kg				-				10	0	0	< 0.05			-			< 0.05		< 0.05			< 0.05	-							< 0.05	< 0.05		
	Heptachlor epoxide	mg/kg	0.05								0	0	< 0.05						< 0.05		< 0.05			0.07								< 0.05	< 0.05		
	Hexachlorobenzene Methoxychlor	mg/kg mg/kg	0.05					-		10 400	0	0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
	Toxaphene	mg/kg	1.0		•			-				0	<1						<1		<1			<1								<1	< 1		
	Vic EPA IWRG 621 OCP 9total) Vic EPA IWRG 621 Other OCP (total)	mg/kg mg/kg						-			0	1	< 0.2						< 0.2		0.77			< 0.2 < 0.2								< 0.2	< 0.2		
	Alpha + Beta Endosulfan	mg/kg	0.05					-		340	0	0	< 0.05						< 0.05		< 0.05			< 0.05								< 0.05	< 0.05		
PCBs	Total PCB	mg/kg	5.0							1	0	0	< 0.5						< 0.5		< 0.5			< 0.5								< 0.5	<0.5		

LAR2 Charles Street Square, Parramatta NSW

	nuncs street square, i														
P	reliminary Acid Sulfat	e Soil Analysis						Reference	BH01-1.5	BH03-2.5	BH04-2.0	BH05-2.0	BH06-1.0	BH07-2.0	BH08-1.0
7	957-ER-2-1					Sample		Sample ID	\$19-Jn08526	S19-Jn08534	S19-My38771	S19-My38768	S19-My38764	S19-My38761	S19-My38757
G	roup	Analyte	Units	PQL	ASSMAC (1998)	DATASET	DATASET	DATASET							
						AVERAGE	MINIMUM	MAXIMUM							
		phf	pH Units	0	<4	8.6	7.4	9.8	7.5	8.4	8.2	7.4	9.1	9.8	9.5
	Field Screen	pHfox	pH Units	0	<3.5	6.1	3.3	8.2	6.2	3.3	5.2	4.9	7.3	8.2	7.4
		Reaction Rating	pH Units	0	2	4.0	4	4	4	4	4	4	4	4	4

Concentration exceed/less than the preliminary acid sulphate screening criteria.

Concentration exceeding the adopted action criteria (Table 4.4 ASSMAC Manual)

* = No currently available criterion

- = No sample analysed

Table LAR3					Sample ID		BH01-0.1	BH01-1.0	BH02-0.1	BH02-1.0	BH03-0.1	BH03-1.0	BH04-0.1	BH04-2.0	BH05-0.1	BH05-2.0	BH06-0.1	BH06-2.0	BH07-1.0	BH07-2.0	BH08-1.0	BH08-2.0
Charles Stree	t Square, Parramatta NSW				Reference		\$19-Jn08524	\$19-Jn08525	\$19-Jn08527		S19-Jn08530		S19-My38769	S19-My38771						S19-My38761		S19-My38758
Soil Results 8	Adopted Site Criteria				Date Sampled		7/6/2019	7/6/2019	7/6/2019	7/6/2019	7/6/2019	7/6/2019	21/5/2019	22/5/2019	23/5/2019	24/5/2019	25/5/2019	26/5/2019	27/5/2019	28/5/2019	29/5/2019	30/5/2019
7957-ER-2-1					Sample Matrix		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Group	Analyte	Units	PQL	Asbestos Health Screening Level (w/w) NEPC 2013																		
				HSL - C Recreational / Open Space	Data Set Minimum	Data Set Maximum																
Asbestos	Asbestos I.D	% w/w	0.001	0.001			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.34	<0.01	<0.01	Yes	Yes	Yes

 Highlighted concentration exceeds the adopted site criteria - Asbestos Health Screening Level (w/w) - NEPC 2013

 ACM
 Asbestos Containing Material

FA and AF Fibrous Asbestos and Asbestos Fines

A did AF Finitous Assessos and Assessos miles
 No published criteria or sample not analysed
 NL Not Limiting
 Detected at below the limit of reporting

Table LAR4			Sample ID	BH03-1.0	BD1		BH03-1.0	SD1	
Charles Street S	Square, Parramatta NSW		Reference	S19-Jn08531	S19-Jn08535		S19-Jn08531	SE188519.001	
RPD Table			Date Sampled	7/6/2019	7/6/2019		7/6/2019	7/6/2019	
7957-ER-1-1			Sample Matrix	Soil	Soil		Soil	Soil	
Group	Analyte	Units	LOR			RPD (%)			RPD (%)
	Arsenic	mg/kg	2	23	30	26	23	28	20
	Cadmium	mg/kg	0.4	0.5	0.5	0	0.5	<1	#VALUE!
	Chromium	mg/kg	5.0	29	32	10	29	26	11
Metals	Copper	mg/kg	5.0	54	54	0	54	68	23
Ivietais	Lead	mg/kg	5	170	200	16	170	203	18
	Mercury	mg/kg	0.1	< 0.1	< 0.1	#VALUE!	< 0.1	< 0.1	#VALUE!
	Nickel	mg/kg	5	34	30	13	34	38.0	11
	Zinc	mg/kg	5	260	290	11	260	340.0	27
	F1	mg/kg	20	<20	<20	#VALUE!	<20	<10	#VALUE!
ТКН	F2	mg/kg	50	<50	<50	#VALUE!	<50	<50	#VALUE!
	F3	mg/kg	100	460	540	16	460	970	71
	F4	mg/kg	100	<100	<100	#VALUE!	<100	230	#VALUE!

RPD exceeding criteria

VALUE Primary, Duplicate or Triplicate less than LOR and/or not analysed

APPENDIX A

PROPOSED DEVELOPMENT PLANS

								NOT FO	DR CON
	DESIGN TEAM		CLIENT		LANDSCAPE	ARCHITECT HEAD	CONSULTANT	DRAWING STATU	JS
	Architect LAHZNIMMO ARCHITECTS	Engineers NORTHROP CONSULTING ENGINEERS		CITY OF PARRAMATTA	C	nn		PART 5	ASSE
Datum AHD	Suite 404, Flourmill Studios 3 Gladstone St, Newtown NSW 2042 T 02 9550 5200	Northrop Wollongong T 02 4226 3333 Lighting & electrical • Hydraulic Northrop Parramatta T 02 9241 4188 Flood		City of Parramatta 126 Church Street Parramatta NSW 2150 PO Box 3 Parramatta NSW 2124	Spackman Mossop Michaels Pty Ltd 115 Flinders Street Surry Hills NSW 2010 www.sm2group.com.au info@sm2group.com.au T 02 9361 454			Designed CD Drawn CD Checked	Drawing date August 2 Plot date 18/8/20
		Northrop Newcastle T 02 4943 1777 Traffic			SMM Project r	no: 18074		MS	
S		Northrop Canberra T 02 6285 1822			Approval	Director	Date	Sheet size	Size on origi
generated					Tender		xx/xx/xx	Δ1	
					Construction		xx/xx/xx	A1	0 10

GENERAL ARRANGE

ipe to be relocated hydrant relocated
QUARE RRAMATTA
MENT PLAN

Rev 1

APPENDIX B

GROUNDWATER

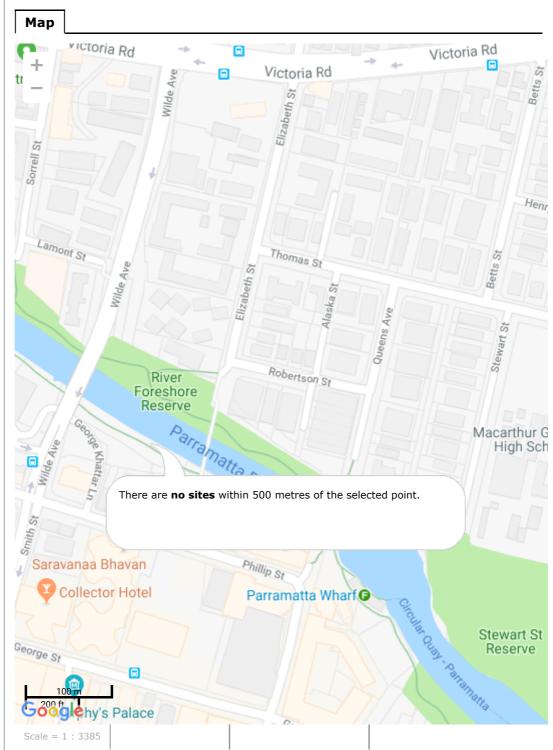
help · contact · customise

State Overview

Rivers and Streams favourites search download sites find a site ⊡-Real Time Da...

Daily River Reports ⊡-Daily River R...

Dams favourites search download sites find a site ⊡-Real Time Da...


Groundwater (Telemetered data) favourites search download sites find a site ⊡-Real Time Da...

All Groundwater Site details search · download sites · find a site ⊡ All Groundw... • North Coa... Hunter Re... **Greater S**... • South Coa... Northwest... ⊡ Central W... ∃ Southwest... Far West R... Great Arte... **⊡**-Coal Basins

All Groundwater Site Details » All Groundwater Map Greater Sydney Region

bookmark this page

All data times are Eastern Standard Time

Meteorology favourites

APPENDIX C

BOREHOLE LOGS

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

Job No: 7957

BH No: BH 1

Sheet: 1 of 1

Borehole Log

BOREHOLE / TEST PIT 7957 LOGS.GPJ GINT STD AUSTRALIA.GDT 27/6/19

Client: Northrtop Consulting Engineers Pty. Ltd. Started: 7/6/19 Project: Charles Street Square Upgrade Finished: 7/6/19 Location: Charles Street Square, Parramatta NSW 2150 Borehole Size: 100mm Diameter Rig Type: CE 180 R7 Driller: M. Wilkins Hole Location: Refer Drawing 7957-GR-1-A Logged: DJ RL Surface: Contractor: BG Drilling Bearing: ---Checked: MS Classification Symbol Consistency/ Density Index Samples Graphic Log Moisture Condition Material Description Tests Additional Observations Method Water Remarks Depth RI (m) (m) PAVER PAVERS, thickness 50mm ADT DT CONCRETE SLAB, thickness 70mm. CONCRETE SUBBASE FILL: Silty clay, low plasticity, dark brown, with fine to medium subangular gravel, appears moderately compacted. D FILL ---Sandy CLAY, low plasticity, brown to orange-brown, fine to medium grained sand, trace fine to medium subangular gravel. ALLUVIAL D CL (S F) Clayey SAND, orange-brown, fine to medium grained, low plasticity fines. SC D L -MD SPT 8, 11, 10 N=21 Groundwater Not Encountered D SAND, poorly graded and fine to medium grained, light brown, trace low plasticity MD SP fines 2 3 SPT 8, 10, 8 N=18 SP As above, but brown transitioning to light grey. D MD 4 SHALE, highly weathered, very low to low strength, dark grey, fine grained, very BEDROCK --thinly bedded SPT 24, 25/50mm Borehole BH 1 terminated at 4.65m Borehole terminated at TC bit refusal. 5 6

T: 1800 288 188 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: BH 2 Sheet: 1 of 1 Job No: 7957

Borehole Log

Client: Northrtop Consulting Engineers Pty. Ltd.

Project: Charles Street Square Upgrade

Location: Charles Street Square, Parramatta NSW 2150

Started: 7/6/19 Finished: 7/6/19 Borehole Size: 100mm Diameter

Ria	Typ	e: C	E 180		1	Hole Location: Refer Drawing 7957-GR-1-A Driller: M. Wilk	kins	Logge			: 100mm Diameter	
-		face:				Contractor: BG Drilling Bearing:		Check				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation	
5						CONCRETE, thickness 220mm.					CONCRETE	
				- - - <u>1</u>			FILL: Sand, brown to red-brown, poorly graded, fine to medium grained, appears poorly compacted.			D		FILL
	Groundwater Not Encountered					FILL: Clayey Sand, brown to red brown, poorly graded, fine to medium grained, low plasticity fines, trace organics (root fibres), appears poorly compacted.		SPT 2, 4, 4 N=8				
	Groundwate		-		CL	CLAY, low plasticity, brown to dark brown.			D	(VS - H)	t RESIDUAL	
			<u>3</u>			Interbedded layers of SHALE (~50%) and CLAY (~50%), extremely weathered, very low strength, dark grey, fine grained.	M	SPT 11, 12, 13 N=25	D	н	BEDROCK	
						SHALE, highly weathered, very low to low strength, dark grey, thinly bedded, fine grained, some ironstaining observed in select bedding planes.		SPT 25/100mm	 			
			<u>5</u> - - - 6			Borehole BH 2 terminated at 4.8m					Borehole terminated at bit refusal.	

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

Job No: 7957

BH No: BH 3

Sheet: 1 of 1

Client: Northrtop Consulting Engineers Pty. Ltd. Started: 7/6/19 Project: Charles Street Square Upgrade Finished: 7/6/19 Location: Charles Street Square, Parramatta NSW 2150 Borehole Size: 100mm Diameter Rig Type: CE 180 R7 Driller: M. Wilkins Hole Location: Refer Drawing 7957-GR-1-A Logged: DJ RL Surface: Contractor: BG Drilling Bearing: ---Checked: MS Classification Symbol Consistency/ Density Index Samples Moisture Graphic Log Condition Material Description Tests Additional Observations Method Water Remarks RI Depth (m) (m) CONCRETE, thickness 140mm. CONCRETE Б P 4 FILL: Clay, low to medium plasticity, dark brown, with fine to medium grained D FILL ADT sand, with fine to medium subangular gravel, appears moderately compacted. 1 FILL: Sandy gravel, light grey, fine to coarse snadstone gravel (sandstone gravel is highly to moderately weathered, low to medium strength),fine to medium grained sand, appears well compacted. S GW Table at 1.5m SPT 12, 25, HB FILL: Clay with gravel, low plasticity, dark brown, fine to medium sandstone S 2 gravel (sandstone gravel is highly weathered, low to meidum strength). appears well compacted. FILL: Cobble and Boulers, grey, (cobbles and boulders are sandstone, highly weathered, low to medium strength), appears well compacted. _ 3 SPT 25/10mm Borehole BH 3 terminated at 3.1m Borehole terminated on TC bit refusal. BOREHOLE / TEST PIT 7957 LOGS.GPJ GINT STD AUSTRALIA.GDT 27/6/19 4 5 6

T: 1800 288 188 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: BH 4 Sheet: 1 of 1 Job No: 7957

Pr	ojec	t: Cha	arles S	Street	Square	ngineers Pty. Ltd. e Upgrade are, Parramatta NSW 2150		Started Finish Boreb	ed:	21/	5/19
				D&B 8			C. Haddad				: 100mm Diameter
		face:				Contractor: BG Drilling Bearing:		Check			i
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
DT			-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		CONCRETE, thickness 600mm.					CONCRETE
ADT			- - 1		-	FILL: Silty sandy clay, low plasticity, dark grey, trace fine to medium angula gravel, appears poorly compacted.	ar —		D		FILL
	Groundwater Not Encountered		-	2	CL	CLAY, low to medium plasticity, dark grey.		SPT 5, 4, 6 N=10	D	St	ALLUVIAL
	Ground		2		SC	Clayey SAND, fine to medium grained, brown to dark brown, low plasticity			D	L - MD	ALLUVIAL/ RESIDUAL
						Interbedded layers of CLAY (~50%) and shale (~50%), extremely weather very low to low strength, dark grey, fine grained.	ea,	SPT 25, HB	D	H	BEDROCK
BOREHOLE / TEST PIT 7957 LOGS.GPJ GINT STD AUSTRALIA.GDT 27/6/19						Borehole BH 4 terminated at 3.3m					Borehole terminated at TC bit refusal

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

Job No: 7957

BH No: BH 5

Sheet: 1 of 1

	Iient: Northrtop Consulting Engineers Pty. Ltd. Started: 21/5/19 roject: Charles Street Square Upgrade Finished: 21/5/19											
	-					e Upgrade ıre, Parramatta NSW 2150		Finish Boreh			5/19 :100mm Diameter	
				D&B 8	-	Hole Location: Refer Drawing 7957-GR-1-A	Driller: C. Hado					
RL	Surf	ace:				Contractor: BG Drilling	Bearing:	Check	ed:	MS		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations	
ADT				<u>x17, x1,</u> 1, x1,		TOPSOIL: Silty sand, fine grained, brown, trace organics (root	t fibres).		М		TOPSOIL	
	GW Table at 1.3mI		- - - - - - - - - - 2 - -			FILL: Sandy clay, low plasticity, brown mottled red, medium to gravel, trace brick fragments, appears poorly to moderately co FILL: Gravelly silty sand, medium to coarse grained, dark grey appears poorly to moderately compacted.	mpacted.	SPT 5, 3, 3 N=6	W		FILL	
						CONCRETE SLAB					CONCRETE (high auger penetration resistance)	
BOREHOLE / IESI PII / 95/ LOGS.GPJ GINI SID AUSIRALIA.GDT 27/6/19			3 - 4 - 5 - - - - - - - - - - -			Borehole BH 5 terminated at 2.8m					Borehole terminated at TC bit refusal.	

Alliance Geotechnical Pty Ltd T: 1800 288 188

F: 02 9675 1888

E: office@allgeo.com.au

W: www.allgeo.com.au

Sample Point No: BH6 Sheet: 1 of 1 Job No:7957

٦

						ngineers Pty. Ltd.		Started:		
						Upgrade		Finished:		
Lo	catio	n: C	narles	Street	Squar	re Parramatta NSW		Borehole	Size:	: 100mm Diameter
Rig	д Тур	e:H	anjin D)B8		Hole Location: Refer Drawing 7957-GR-1-A	Driller: C. Haddad	Logged:	то	
RL	. Sur	face:				Contractor: BG Drilling	Bearing:	Checked:	SW	
Method		RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples entry Tests sign Remarks & S	Consistency/ Density Index	Additional Observations
		RL (m)	Depth (m) - - - - - - - - - - - - - - - - - - -	Grap		FILL: Clayey SAND, fine sand, very loose, light brown FILL: Clayey SAND w/ gravels, loose, brown FILL: Sandy GRAVEL; medium gravels, loose, dark brown / grey Increasing gravels Borehole BH6 terminated at 2m				Geo-textile layer ACM fragment
			6							

Г

Borehole Log

Borehole Log

Alliance Geotechnical Pty Ltd T: 1800 288 188

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

Sample Point No: BH7 Sheet: 1 of 1 Job No:7957

lie	ent:	North	nrtop C	Consul	ting En	gineers Pty. Ltd.		Started: 21/5/19				
					t Squar						: 100mm Diameter	
			anjin E)B8								
	Surr	ace:				Contractor: BG Dhiling	Bearing:					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations	
AUI					SW-SC	FILL: Clayey SAND w/ silt, very loose, light brown			D			
	Groundwater Not Encountered Wa		Depm (m) 		SW-SC				D		Significant ACM	
		Metter Nation	Project: Cha ocation: Cl Rig Type: Hi RL Surface: users RL RL users RL NR (m)	Project: Charles S Ocation: Charles Rig Type: Hanjin II RL Surface: Image: Surface: Image: Surface Image: Surface: Image: Surface Image: Surface: Image: Surface Image: Surface: Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface <td>roject: Charles Street S ocation: Charles Street S Rt Surface:</td> <td>roject: Charles Street Square ocation: Charles Street Square Rg Type: Hanjin DB8 EL Surface:</td> <td>AL Surface: Contractor: BG Drilling and and rest of the second second</td> <td>reject: Charles Street Square Upgrad Isg Type: Hanijn DB8 Is Usfrace: Contractor: Refer Drawing 7957-GR-1A Driller: C. Haddad Dearing:</td> <td>Induct: Charles Street Square Lygade Finish Boreh Ig Type: Hein Jin DBB Hele Location: Ref Drawing 7957-GR-1-A Driller: Charles Street Square Paramata NSV Logat Logat</td> <td>Inspect: Charles Street Square Ugrade Prinsbet: Borehole Borehole</td> <td>Induct: Charles Street Square Daramatta NSW Enclose Street Square Paramatta NSW Decision: Street Square NSW Decis NSW Decis</td>	roject: Charles Street S ocation: Charles Street S Rt Surface:	roject: Charles Street Square ocation: Charles Street Square Rg Type: Hanjin DB8 EL Surface:	AL Surface: Contractor: BG Drilling and and rest of the second	reject: Charles Street Square Upgrad Isg Type: Hanijn DB8 Is Usfrace: Contractor: Refer Drawing 7957-GR-1A Driller: C. Haddad Dearing:	Induct: Charles Street Square Lygade Finish Boreh Ig Type: Hein Jin DBB Hele Location: Ref Drawing 7957-GR-1-A Driller: Charles Street Square Paramata NSV Logat Logat	Inspect: Charles Street Square Ugrade Prinsbet: Borehole Borehole	Induct: Charles Street Square Daramatta NSW Enclose Street Square Paramatta NSW Decision: Street Square NSW Decis NSW Decis	

Alliance Geotechnical Manage the earth, eliminate the risk

Borehole Log

Alliance Geotechnical Pty Ltd T: 1800 288 188

F: 02 9675 1888

E: office@allgeo.com.au

W: www.allgeo.com.au

Sample Point No: BH8 Sheet: 1 of 1 Job No:7957

С	ent:	North	nrtop C	onsul	ting En	igineers Pty. Ltd.		Started: 21/5/19				
						Upgrade		Finishe				
					Squar	e Parramatta NSW					: 100mm Diameter	
			anjin C)B8		Hole Location: Refer Drawing 7957-GR-1-A	Driller: C. Haddad					
RL	. Sur	ace:				Contractor: BG Drilling	Bearing:	Checke	ed:	SW		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Condition	Consistency/ Density Index	Additional Observations	
ADT			_		SW-SC	FILL: Clayey Sand, medium sand, dry with coarse gravels			-		Significant ACM encountered	
	Groundwater Not Encountered		- - - 1 - - - - - - - - - - - -			Borehole BH8 terminated at 2m					Significant ACM encountered	
			3 - - 4 - 5 - - - - - - - - - - - - - - -									

APPENDIX D

LABORATORY DOCUMENTS

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention:

Steven Wallace

mgt

Report	
Project name	
Project ID	
Received Date	

657558-S PARRAMATTA 7957 May 23, 2019

Client Sample ID			BH08-0.1	BH08-1.0	BH08-2.0	BH07-0.1
Sample Matrix			Soil	Solid	Solid	Soil
Eurofins mgt Sample No.			S19-My38756	S19-My38757	S19-My38758	S19-My38759
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		U.I.I				
TRH C6-C9	20	mg/kg	< 20	_	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	-	220	110
TRH C29-C36	50	mg/kg	< 50	-	95	88
TRH C10-36 (Total)	50	mg/kg	< 50	-	315	198
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	80	-	88	89
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	280	170
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	280	170
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.2
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	2.5
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	2.7
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.4
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.2
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.2
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.4

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

mgt

Client Sample ID Sample Matrix			BH08-0.1 Soil	BH08-1.0 Solid	BH08-2.0 Solid	BH07-0.1 Soil
Eurofins mgt Sample No.			S19-My38756	S19-My38757	S19-My38758	S19-My38759
Date Sampled			1	-	-	
•		11-26	May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	0.7	< 0.5	3.4
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg mg/kg	< 0.5	0.7	< 0.5	3.3
Pyrene Total PAH*	0.5		< 0.5	1.4	< 0.5	17.1
	1	mg/kg %	92	1.4	103	98
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	98	111	103	101
Organochlorine Pesticides		/0			100	101
	0.1	mallea	- 0.1			
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	< 0.1 < 0.05	-	-	-
4.4-DDD 4.4'-DDE		mg/kg		-		
4.4-DDE 4.4'-DDT	0.05	mg/kg	< 0.05 < 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg mg/kg	< 0.05	-	-	
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-		-
Endosulfan I	0.05	mg/kg	< 0.05	-	_	-
Endosulfan II	0.05	mg/kg	< 0.05			
Endosulfan sulphate	0.05	mg/kg	< 0.05		-	
Endrin	0.05	mg/kg	< 0.05			
Endrin aldehyde	0.05	mg/kg	< 0.05	_	_	-
Endrin ketone	0.05	mg/kg	< 0.05	_	_	_
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_	_	-
Heptachlor	0.05	mg/kg	< 0.05	_	_	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	_	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	_	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	80	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	73	-	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 5	-	-	-
Aroclor-1221	0.1	mg/kg	< 1	-	-	-
Aroclor-1232	0.5	mg/kg	< 5	-	-	-
Aroclor-1242	0.5	mg/kg	< 5	-	-	-
Aroclor-1248	0.5	mg/kg	< 5	-	-	-
Aroclor-1254	0.5	mg/kg	< 5	-	-	-
Aroclor-1260	0.5	mg/kg	< 5	-	-	-
Total PCB*	0.5	mg/kg	<5	-	-	-
Dibutylchlorendate (surr.)	1	%	80	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	73	-	-	-

mgt

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH08-0.1 Soil S19-My38756 May 21, 2019	BH08-1.0 Solid S19-My38757 May 21, 2019	BH08-2.0 Solid S19-My38758 May 21, 2019	BH07-0.1 Soil S19-My38759 May 21, 2019
% Moisture	1	%	7.4	9.1	8.1	4.3
Heavy Metals		70		0.1	0.1	1.0
Arsenic	2	mg/kg	6.0	6.8	5.9	5.4
Cadmium	0.4	mg/kg	< 0.4	0.4	0.4	< 0.4
Chromium	5	mg/kg	9.1	11	12	16
Copper	5	mg/kg	31	30	27	57
Lead	5	mg/kg	54	88	77	97
Mercury	0.1	mg/kg	< 0.1	0.1	0.1	0.1
Nickel	5	mg/kg	7.1	9.6	11	19
Zinc	5	mg/kg	130	140	120	270
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	-	9.5	-	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	7.4	-	-
Reaction Ratings*505		comment	-	4.0	-	-

Client Sample ID			BH07-1.0	BH07-2.0	BH06-0.1	BH06-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-My38760	S19-My38761	S19-My38763	S19-My38764
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	< 20	-
TRH C15-C28	50	mg/kg	-	190	50	-
TRH C29-C36	50	mg/kg	-	140	56	-
TRH C10-36 (Total)	50	mg/kg	-	330	106	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	74	90	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	-	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	-
TRH >C16-C34	100	mg/kg	-	290	< 100	-
TRH >C34-C40	100	mg/kg	-	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	290	< 100	-

mgt

Client Sample ID Sample Matrix			BH07-1.0 Soil	BH07-2.0 Soil	BH06-0.1 Soil	BH06-1.0 Soil
•					. – –	
Eurofins mgt Sample No.			S19-My38760	S19-My38761	S19-My38763	S19-My38764
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		-				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	1.2	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	//////////////////////////////////////	99	102	99	107
p-Terphenyl-d14 (surr.)	1	%	103	102	104	114
Organochlorine Pesticides		70	100	107	104	
Chlordanes - Total	0.1	mg/kg	_	< 0.1		_
4.4'-DDD	0.05	mg/kg	_	< 0.05		_
4.4'-DDE	0.05	mg/kg	_	< 0.05		_
4.4'-DDT	0.05	mg/kg	_	< 0.05		_
a-BHC	0.05	mg/kg	_	< 0.05	-	_
Aldrin	0.05	mg/kg	_	< 0.05		_
b-BHC	0.05	mg/kg		< 0.05		
d-BHC	0.05	mg/kg	_	< 0.05	_	-
Dieldrin	0.05		-	< 0.05	-	-
Endosulfan I		mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-		-	-
	0.05	mg/kg		< 0.05	-	
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	71	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	67	-	-

Client Sample ID			BH07-1.0	BH07-2.0	BH06-0.1	BH06-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-My38760	S19-My38761	S19-My38763	S19-My38764
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·	•				
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	71	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	67	-	-
% Moisture	1	%	12	20	4.3	6.2
Heavy Metals						
Arsenic	2	mg/kg	10	6.8	5.3	3.8
Cadmium	0.4	mg/kg	2.8	1.0	< 0.4	< 0.4
Chromium	5	mg/kg	18	85	10	10
Copper	5	mg/kg	820	230	33	34
Lead	5	mg/kg	230	74	71	62
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1
Nickel	5	mg/kg	24	34	11	17
Zinc	5	mg/kg	760	220	120	160
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	-	9.8	-	9.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	8.2	-	7.3
Reaction Ratings* ^{S05}		comment	-	4.0	-	4.0

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH06-2.0 Soil S19-My38765	BH05-0.1 Soil S19-My38766	BH05-1.0 Soil S19-My38767	BH05-2.0 Soil S19-My38768
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	37	-	< 20
TRH C15-C28	50	mg/kg	< 50	220	-	300
TRH C29-C36	50	mg/kg	< 50	210	-	270
TRH C10-36 (Total)	50	mg/kg	< 50	467	-	570
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	83	-	79

Client Sample ID Sample Matrix			BH06-2.0 Soil	BH05-0.1 Soil	BH05-1.0 Soil	BH05-2.0 Soil
Eurofins mgt Sample No.			S19-My38765	S19-My38766	S19-My38767	S19-My38768
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit		, ,	, ,	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	-	Onit				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	_	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	360	-	500
TRH >C34-C40	100	mg/kg	< 100	140	-	150
TRH >C10-C40 (total)*	100	mg/kg	< 100	500	-	650
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	4.1	15	10
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	4.1	15	10
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	4.1	15	10
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	1.8	0.9
Anthracene	0.5	mg/kg	< 0.5	< 0.5	2.4	1.1
Benz(a)anthracene	0.5	mg/kg	< 0.5	2.2	11	5.6
Benzo(a)pyrene	0.5	mg/kg	< 0.5	2.6	9.6	6.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	2.4	6.1	5.7
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	1.8	5.5	4.3
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.9	8.6	5.1
Chrysene	0.5	mg/kg	< 0.5	2.3	9.8	5.9
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.6	2.0	1.4
Fluoranthene	0.5	mg/kg	< 0.5	4.9	21	13
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.6	4.8	3.8
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.8	8.3	4.6
Pyrene	0.5	mg/kg	< 0.5	4.5	21	12
Total PAH*	0.5	mg/kg	< 0.5	26.6	111.9	69.9
2-Fluorobiphenyl (surr.)	1	%	96	109	104	102
p-Terphenyl-d14 (surr.)	1	%	101	108	112	103
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	0.08	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-

Client Sample ID			BH06-2.0	BH05-0.1	BH05-1.0	BH05-2.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-My38765	S19-My38766	S19-My38767	S19-My38768
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Heptachlor epoxide	0.05	mg/kg	-	0.07	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	0.08	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	83	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	68	-	-
Polychlorinated Biphenyls	•					
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	83	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	68	-	-
% Moisture	1	%	8.6	15	22	22
Heavy Metals						
Arsenic	2	mg/kg	3.2	6.1	85	5.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.6	19	18	14
Copper	5	mg/kg	21	32	14	16
Lead	5	mg/kg	54	83	110	75
Mercury	0.1	mg/kg	< 0.1	0.1	0.2	0.2
Nickel	5	mg/kg	6.6	15	8.2	6.4
Zinc	5	mg/kg	110	220	59	85
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	-	-	-	7.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units		-	-	4.9
Reaction Ratings ^{*S05}		comment		-	-	4.0

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH04-0.1 Soil S19-My38769 May 21, 2019	BH04-1.0 Soil S19-My38770 May 21, 2019	BH04-2.0 Soil S19-My38771 May 21, 2019	BH5-2.6 Soil S19-My38773 May 21, 2019	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions						
TRH C6-C9	20	mg/kg	< 20	-	< 20	-	
TRH C10-C14	20	mg/kg	27	-	< 20	-	
TRH C15-C28	50	mg/kg	160	-	< 50	-	
TRH C29-C36	50	mg/kg	87	-	< 50	-	
TRH C10-36 (Total)	50	mg/kg	274	-	< 50	-	

Client Sample ID			BH04-0.1	BH04-1.0	BH04-2.0	BH5-2.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-My38769	S19-My38770	S19-My38771	S19-My38773
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
BTEX		1				
Benzene	0.1	mg/kg	< 0.1	_	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	82	-	88	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	_
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	_
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	210	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	210	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	3.1	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	3.3	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	3.6	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	0.8	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	2.4	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	2.3	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	1.8	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	1.3	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	1.9	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	2.1	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	5.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.1	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	2.2	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	4.8	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	26.2	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	109	103	105	-
p-Terphenyl-d14 (surr.)	1	%	106	105	107	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	0.77	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.1	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-

Client Sample ID Sample Matrix			BH04-0.1 Soil	BH04-1.0 Soil	BH04-2.0 Soil	BH5-2.6 Soil
•						
Eurofins mgt Sample No.			S19-My38769	S19-My38770	S19-My38771	S19-My38773
Date Sampled			May 21, 2019	May 21, 2019	May 21, 2019	May 21, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						_
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	0.77	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	0.77	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	68	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	69	-	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-
Total PCB*	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.)	1	%	68	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	69	-	-	-
Chloride	10	mg/kg	-	-	-	35
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	-	-	-	150
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		-	-	7.1
Resistivity*	0.5	ohm.m	-	-	-	330
Sulphate (as SO4)	10	mg/kg	-	-	-	210
% Moisture	1	%	19	12	11	21
Heavy Metals						_
Arsenic	2	mg/kg	5.4	3.3	< 2	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	19	8.7	< 5	-
Copper	5	mg/kg	59	23	8.5	-
Lead	5	mg/kg	87	41	7.2	-
Mercury	0.1	mg/kg	0.1	0.1	< 0.1	-
Nickel	5	mg/kg	28	6.1	< 5	-
Zinc	5	mg/kg	180	100	16	-
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units		-	8.2	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	-	5.2	-
Reaction Ratings* ^{S05}		comment	-	-	4.0	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH4(1.0) Soil S19-My38774 May 21, 2019
Test/Reference	LOR	Unit	May 21, 2013
Chloride	10	mg/kg	21
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	230
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.5
Resistivity*	0.5	ohm.m	220
Sulphate (as SO4)	10	mg/kg	140
% Moisture	1	%	12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 29, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 29, 2019	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 29, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 29, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 29, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 29, 2019	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	May 29, 2019	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	May 29, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Chloride	Sydney	May 29, 2019	28 Day
- Method: E045 /E047 Chloride			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 29, 2019	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 29, 2019	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	May 29, 2019	28 Day
- Method: E045 Anions by Ion Chromatography			
% Moisture	Sydney	May 27, 2019	14 Day
- Method: LTM-GEN-7080 Moisture			
Acid Sulfate Soils Field pH Test	Brisbane	May 29, 2019	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pro	Company Name:Alliance GeotechnicalAddress:10 Welder Road Seven Hills NSW 2147Project Name:PARRAMATTA 7957						Re	der N port i one: x:	#:	18	57558 800 2 2 967	88 18				Received:May 23, 2019 10:29 AMDue:May 30, 2019Priority:5 DayContact Name:Steven WallaceEurofins mgt Analytical Services Manager : Andrew Black
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271				Asbestos - AS4964	Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Acid Sulfate Soils Field pH Test	Metals M8	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7		
				271												
		- NATA Site # 1				Х	X	Х	Х		Х	Х	X	Х	Х	
		y - NATA Site #								X						
		NATA Site # 237	36													
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH08-0.1	May 21, 2019		Soil	S19-My38756							х		х	х	
2	BH08-1.0	May 21, 2019		Soil	S19-My38757	Х			Х	х	х			х		
3	BH08-2.0	May 21, 2019		Soil	S19-My38758	Х								Х	х	
4	BH07-0.1	May 21, 2019		Soil	S19-My38759									х	х	
	BH07-1.0	May 21, 2019		Soil	S19-My38760	Х			Х		х			х		
	BH07-2.0	May 21, 2019		Soil	S19-My38761					X		Х		Х	х	
	BH07-2.0	May 21, 2019		Building Materials	S19-My38762		х									
	BH06-0.1	May 21, 2019		Soil	S19-My38763	Х								Х	Х	
9	BH06-1.0	May 21, 2019		Soil	S19-My38764				X	X	X			X		

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au	

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad	Company Name: Alliance Geotechnical Address: 10 Welder Road Seven Hills NSW 2147					Re Ph	Order No.: Report #: Phone: Fax:		18	57558 300 20 2 967	88 18				Received:May 23, 2019 10:29 AMDue:May 30, 2019Priority:5 DayContact Name:Steven Wallace
	oject Name: oject ID:	PARRAMATTA 7957													Eurofins mgt Analytical Services Manager : Andrew Black
		Sample D			Asbestos - AS4964	Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Acid Sulfate Soils Field pH Test	Metals M8	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	
		ry - NATA Site # 1254	& 142/1		x	x	х	х		х	х	x	x	Х	
		NATA Site # 18217 - NATA Site # 20794			^	^	^	^	х	^	^		^	^	
		ATA Site # 23736							~						
		May 21, 2019	Soil	S19-My38765	х								х	х	
		May 21, 2019	Soil	S19-My38766	х						х		х	х	
		May 21, 2019	Soil	S19-My38767				Х		х			х		
		May 21, 2019	Soil	S19-My38768	Х				Х				Х	х	
14		May 21, 2019	Soil	S19-My38769	Х						Х		Х	Х	
15		May 21, 2019	Soil	S19-My38770				Х		Х			Х		
16		May 21, 2019	Soil	S19-My38771	х				Х				Х	Х	
17	BH08-0.1	May 21, 2019	Building Materials	S19-My38772			х								
18	BH5-2.6	May 21, 2019	Soil	S19-My38773								х	х		
19	BH4(1.0)	May 21, 2019	Soil	S19-My38774								Х	х		
Test	Counts				9	1	1	5	5	5	4	2	17	10	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

> ug/L: micrograms per litre %: Percentage

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre
ppm: Parts per million	ppb: Parts per billion
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units

Terms

renns	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.2 2018
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			- 1		
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank		I	- 4		
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank		1 010	0.0	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	ing/kg	< 100	100	1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	iiig/kg	< 0.5	0.5	1 855	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4-DDD 4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4-DDE 4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin			0.05	Pass	
	mg/kg	< 0.05			
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank		-		1		
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
Total PCB*	mg/kg	< 0.5		0.5	Pass	
Method Blank	I		[]	T	1	
Chloride	mg/kg	< 10		10	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 5		5	Pass	
Method Blank			Г — Т	1	1	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery				1	1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	87		70-130	Pass	
TRH C10-C14	%	106		70-130	Pass	
LCS - % Recovery					1	
BTEX	-				_	
Benzene	%	101		70-130	Pass	
Toluene	%	98		70-130	Pass	
Ethylbenzene	%	100		70-130	Pass	
m&p-Xylenes	%	101		70-130	Pass	
o-Xylene	%	100		70-130	Pass	
Xylenes - Total	%	101		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	119		70-130	Pass	
TRH C6-C10	%	84		70-130	Pass	
TRH >C10-C16	%	111		70-130	Pass	
LCS - % Recovery				1	1	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	103		70-130	Pass	
Acenaphthylene	%	100		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	%	102	70-130	Pass	
Benz(a)anthracene	%	98	70-130	Pass	
Benzo(a)pyrene	%	99	70-130	Pass	
Benzo(b&j)fluoranthene	%	92	70-130	Pass	
Benzo(g.h.i)perylene	%	92	70-130	Pass	
Benzo(k)fluoranthene	%	112	70-130	Pass	
Chrysene	%	101	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	
Fluoranthene	%	103	70-130	Pass	
Fluorene	%	103	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	96	70-130	Pass	
Naphthalene	%	98	70-130	Pass	
Phenanthrene	%	101	70-130	Pass	
Pyrene	%	101	70-130	Pass	
LCS - % Recovery		4			
Organochlorine Pesticides					
Chlordanes - Total	%	120	70-130	Pass	
4.4'-DDD	%	117	70-130	Pass	
4.4'-DDE	%	112	70-130	Pass	
4.4'-DDT	%	92	70-130	Pass	
a-BHC	%	121	70-130	Pass	
Aldrin	%	115	70-130	Pass	
b-BHC	%	106	70-130	Pass	
d-BHC	%	117	70-130	Pass	
Dieldrin	%	114	70-130	Pass	
Endosulfan I	%	114	70-130	Pass	
Endosulfan II	%	108	70-130	Pass	
Endosulfan sulphate	%	101	70-130	Pass	
Endrin	%	103	70-130	Pass	
Endrin aldehyde	%	86	70-130	Pass	
Endrin ketone	%	80	70-130	Pass	
g-BHC (Lindane)	%	118	70-130	Pass	
Heptachlor	%	111	70-130	Pass	
Heptachlor epoxide	%	120	70-130	Pass	
Hexachlorobenzene	%	119	70-130	Pass	
Methoxychlor	%	71	70-130	Pass	
Toxaphene	%	84	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1260	%	70	70-130	Pass	
LCS - % Recovery					
Chloride	%	104	70-130	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	%	102	70-130	Pass	
Resistivity*	%	102	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	106	70-130	Pass	
Cadmium	%	107	70-130	Pass	
Chromium	%	107	70-130	Pass	
Copper	%	105	70-130	Pass	
Lead	%	109	70-130	Pass	
Mercury	%	105	70-130	Pass	
Nickel	%	107	70-130	Pass	
Zinc	%	106	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery						-	
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	tions		Result 1			
TRH C6-C9	S19-My33053	NCP	%	87	70-130	Pass	
Spike - % Recovery						_	
ВТЕХ				Result 1			
Benzene	S19-My33053	NCP	%	100	70-130	Pass	
Toluene	S19-My33053	NCP	%	97	70-130	Pass	
Ethylbenzene	S19-My33053	NCP	%	97	70-130	Pass	
m&p-Xylenes	S19-My33053	NCP	%	98	70-130	Pass	
o-Xylene	S19-My33053	NCP	%	97	70-130	Pass	
Xylenes - Total	S19-My33053	NCP	%	98	70-130	Pass	
Spike - % Recovery				1			
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	tions		Result 1			
Naphthalene	S19-My33053	NCP	%	70	70-130	Pass	
TRH C6-C10	S19-My33053	NCP	%	85	70-130	Pass	
Spike - % Recovery						1	
Organochlorine Pesticides		,		Result 1			
4.4'-DDD	S19-My45671	NCP	%	122	70-130	Pass	
Methoxychlor	S19-My45671	NCP	%	70	70-130	Pass	
Toxaphene	S19-My15842	NCP	%	95	70-130	Pass	
Spike - % Recovery						I	
Heavy Metals				Result 1			
Copper	S19-My42075	NCP	%	95	70-130	Pass	
Lead	S19-My42075	NCP	%	100	70-130	Pass	
Zinc	S19-My42075	NCP	%	84	70-130	Pass	
Spike - % Recovery						1	
Polycyclic Aromatic Hydrocar				Result 1			
Acenaphthene	S19-My38760	CP	%	97	70-130	Pass	
Acenaphthylene	S19-My38760	CP	%	97	70-130	Pass	
Anthracene	S19-My38760	CP	%	98	70-130	Pass	
Benz(a)anthracene	S19-My38760	CP	%	103	70-130	Pass	
Benzo(a)pyrene	S19-My38760	CP	%	97	70-130	Pass	
Benzo(b&j)fluoranthene	S19-My38760	CP	%	93	70-130	Pass	
Benzo(g.h.i)perylene	S19-My38760	CP	%	92	70-130	Pass	
Benzo(k)fluoranthene	S19-My38760	CP	%	101	70-130	Pass	
Chrysene	S19-My38760	CP	%	99	70-130	Pass	
Dibenz(a.h)anthracene	S19-My38760	CP	%	94	70-130	Pass	
Fluoranthene	S19-My38760	CP	%	108	70-130	Pass	
Fluorene	S19-My38760	CP	%	99	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-My38760	CP	%	93	70-130	Pass	
Naphthalene	S19-My38760	CP	%	94	70-130	Pass	
Phenanthrene	S19-My38760	CP	%	101	70-130	Pass	
Pyrene	S19-My38760	CP	%	105	70-130	Pass	
Spike - % Recovery				1 1	I	1	
Heavy Metals				Result 1			
Arsenic	S19-My38760	CP	%	91	70-130	Pass	
Cadmium	S19-My38760	CP	%	105	70-130	Pass	
Chromium	S19-My38760	CP	%	92	70-130	Pass	
Mercury	S19-My38760	CP	%	90	70-130	Pass	
Nickel	S19-My38760	CP	%	88	70-130	Pass	
Spike - % Recovery						1	
Organochlorine Pesticides		,		Result 1			
Chlordanes - Total	S19-My38761	CP	%	97	70-130	Pass	
4.4'-DDE	S19-My38761	CP	%	103	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDT	S19-My38761	СР	%	75			70-130	Pass	
a-BHC	S19-My38761	CP	%	113			70-130	Pass	
Aldrin	S19-My38761	CP	%	107			70-130	Pass	
b-BHC	S19-My38761	CP	%	98			70-130	Pass	
d-BHC	S19-My38761	CP	%	108			70-130	Pass	
Dieldrin	S19-My38761	CP	%	105			70-130	Pass	
Endosulfan I	S19-My38761	CP	%	98			70-130	Pass	
Endosulfan II	S19-My38761	CP	%	98			70-130	Pass	
Endosulfan sulphate	S19-My38761	СР	%	99			70-130	Pass	
Endrin	S19-My38761	CP	%	97			70-130	Pass	
Endrin aldehyde	S19-My38761	СР	%	79			70-130	Pass	
Endrin ketone	S19-My38761	CP	%	85			70-130	Pass	
g-BHC (Lindane)	S19-My38761	СР	%	109			70-130	Pass	
Heptachlor	S19-My38761	СР	%	104			70-130	Pass	
Heptachlor epoxide	S19-My38761	CP	%	110			70-130	Pass	
Hexachlorobenzene	S19-My38761	CP	%	115			70-130	Pass	
Spike - % Recovery			,,,				1 10 100	1 400	
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S19-My38761	СР	%	80			70-130	Pass	
Spike - % Recovery			,,,					1 433	
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	tions		Result 1					
TRH C10-C14	S19-My38763	CP	%	99			70-130	Pass	
Spike - % Recovery	01010/00/00		70				10-100	1 435	
Total Recoverable Hydrocarbons	- 2013 NEPM Eract	lions		Result 1			1		
TRH >C10-C16	S19-My38763	CP	%	103			70-130	Pass	
Spike - % Recovery	<u> 319-Wy30703</u>		/0	103			70-130	газэ	
Spike - % Recovery				Result 1					
Chlorido	040 14 00770	0.0	%	100			70.100	Dees	
Chloride	S19-My38773	CP	70	100			70-130	Pass	
Spike - % Recovery	519-My38773		%				70-130	Pass	
Spike - % Recovery		1		Result 1					
Spike - % Recovery Sulphate (as SO4)	S19-My38774	СР	%				70-130	Pass	Qualifying
Spike - % Recovery		1		Result 1					Qualifying Code
Spike - % Recovery Sulphate (as SO4) Test Duplicate	S19-My38774	CP QA	%	Result 1 73 Result 1			70-130 Acceptance	Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides	S19-My38774 Lab Sample ID	CP QA Source	% Units	Result 1 73 Result 1 Result 1	Result 2	RPD	70-130 Acceptance Limits	Pass Pass Limits	
Spike - % Recovery Sulphate (as SO4) Test Duplicate	S19-My38774	CP QA	%	Result 1 73 Result 1	Result 2 < 0.1	RPD <1	70-130 Acceptance	Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	S19-My38774 Lab Sample ID	CP QA Source CP CP	% Units	Result 1 73 Result 1 Result 1			70-130 Acceptance Limits	Pass Pass Limits Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total	S19-My38774 Lab Sample ID S19-My38756	CP QA Source	% Units mg/kg	Result 1 73 Result 1 < 0.1	< 0.1	<1	70-130 Acceptance Limits	Pass Pass Limits Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	S19-My38774 Lab Sample ID S19-My38756 S19-My38756	CP QA Source CP CP	% Units mg/kg mg/kg	Result 1 73 Result 1 < 0.1 < 0.05	< 0.1 < 0.05	<1 <1	70-130 Acceptance Limits 30% 30%	Pass Pass Limits Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP	% Units mg/kg mg/kg mg/kg	Result 1 73 Result 1 Result 1 < 0.1 < 0.05 < 0.05	< 0.1 < 0.05 < 0.05	<1 <1 <1	70-130 Acceptance Limits 30% 30% 30%	Pass Pass Limits Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1 < 0.05 < 0.05 < 0.05	< 0.1 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin	S19-My38774 Lab Sample ID S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units Mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units Mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin	S19-My38774 Lab Sample ID S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone	S19-My38774 Lab Sample ID S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	70-130 Acceptance Limits 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	CP QA Source CP CP CP CP CP CP CP CP CP CP CP CP CP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0	<1	70-130 Acceptance Limits 30%	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	СР QA Source СР СР СР СР СР СР СР СР СР СР	% Units Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0	<1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide	S19-My38774 Lab Sample ID S19-My38756	СР QA Source СР СР СР СР СР СР СР СР СР СР	% Units Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0	<1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery Sulphate (as SO4) Test Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	S19-My38774 Lab Sample ID S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756 S19-My38756	СР QA Source СР СР СР СР СР СР СР СР СР СР	% Units Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 73 Result 1 < 0.1	< 0.1 < 0.05 < 0	<1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S19-My38756	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Aroclor-1221	S19-My38756	CP	mg/kg	<1	< 1	<1	30%	Pass	
Aroclor-1232	S19-My38756	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Aroclor-1242	S19-My38756	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Aroclor-1248	S19-My38756	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Aroclor-1254	S19-My38756	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Aroclor-1260	S19-My38756	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate	010 1000000	01	iiig/kg	~ 0			0070	1 400	
Dupiloute				Result 1	Result 2	RPD			
% Moisture	S19-My36262	NCP	%	25	24	2.0	30%	Pass	
Duplicate	010 10/00202		70	20	27	2.0	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Mercury	S19-My42054	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Zinc	S19-My42054	NCP	mg/kg	20	22	9.0	30%	Pass	
Duplicate	010101942004		iiig/kg	20	22	5.0	3070	1 433	
Total Recoverable Hydrocarbons -	1999 NEPM Erect	ions		Result 1	Result 2	RPD			
TRH C10-C14	S19-My38759	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14 TRH C15-C28	S19-My38759 S19-My38759	CP	mg/kg	110	100	6.0	30%	Pass	
TRH C13-C28	S19-My38759 S19-My38759	CP	mg/kg	88	79	11	30%	Pass	
Duplicate	019-101907.59		Пуку	00	13		5078	1 435	
Total Recoverable Hydrocarbons -	2013 NEPM Eract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S19-My38759	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-My38759	CP	mg/kg	170	150	10	30%	Pass	
TRH >C34-C40	S19-My38759	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	019-10190739	0	iiig/kg	< 100	< 100		5078	1 435	
Polycyclic Aromatic Hydrocarbons	•			Result 1	Result 2	RPD			
Acenaphthene	S19-My38759	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-My38759	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-My38759	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-My38759	CP	mg/kg	1.5	1.4	4.0	30%	Pass	
Benzo(a)pyrene	S19-My38759	CP	mg/kg	1.7	1.4	12	30%	Pass	
Benzo(b&j)fluoranthene	S19-My38759	CP	mg/kg	1.4	1.5	12	30%	Pass	
Benzo(g.h.i)perylene	S19-My38759	CP	mg/kg	1.4	1.1	9.0	30%	Pass	
Benzo(k)fluoranthene	S19-My38759	CP	mg/kg	1.2	1.1	3.0	30%	Pass	
Chrysene	S19-My38759	CP		1.2	1.3	3.0	30%	Pass	
Dibenz(a.h)anthracene	S19-My38759	CP	mg/kg mg/kg	< 0.5	< 0.5		30%	Pass	
	S19-My38759	CP			3.3	<1	30%	Pass	
Fluoranthene Fluorene	S19-My38759 S19-My38759	CP	mg/kg mg/kg	3.4 < 0.5	3.3 < 0.5	3.0 <1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-My38759 S19-My38759	CP	mg/kg	< 0.5 0.9	< 0.5 0.9	<u><1</u> 6.0	30%	Pass	
Naphthalene	S19-My38759 S19-My38759	CP	mg/kg	< 0.5	< 0.5	<u> </u>	30%	Pass	
Phenanthrene		CP				32		Fail	Q15
	S19-My38759 S19-My38759	CP	mg/kg	1.1	1.6 3.1	6.0	30% 30%		Q I J
Pyrene Duplicate	019-101930739		mg/kg	3.3	3.1	0.0	30%	Pass	
				Pooult 4	Pooult 0	חחם			
Heavy Metals	S10 MU20750	СР	maller	Result 1	Result 2	RPD 20	200/	- Boog	
Arsenic	S19-My38759		mg/kg	5.4	4.4	20	30%	Pass	
Cadmium	S19-My38759	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-My38759	CP	mg/kg	16	19	13	30%	Pass	
Copper	S19-My38759	CP	mg/kg	57	47	18	30%	Pass	
Lead	S19-My38759	CP	mg/kg	97	84	14	30%	Pass	
Nickel	S19-My38759	CP	mg/kg	19	20	6.0	30%	Pass	
Duplicate				Desilit	Desitio	000			
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	0.001	+	
TRH C6-C9	S19-My38761	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S19-My38761	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-My38761	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-My38761	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-My38761	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-My38761	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-My38761	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-My38761	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-My38761	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	S19-My38771	CP	pH Units	8.2	8.0	pass	30%	Pass	
Reaction Ratings*	S19-My38771	CP	comment	4.0	4.0	pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S19-My38773	CP	mg/kg	35	36	3.0	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	S19-My42057	NCP	uS/cm	49	50	<1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S19-My40520	NCP	pH Units	7.0	7.1	1.0	30%	Pass	
Resistivity*	S19-My42057	NCP	ohm.m	1000	1000	<1	30%	Pass	
Sulphate (as SO4)	S19-My38773	CP	mg/kg	210	210	2.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N04 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised By

Andrew Black	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Gabriele Cordero	Senior Analyst-Inorganic (NSW)
Gabriele Cordero	Senior Analyst-Metal (NSW)
Myles Clark	Senior Analyst-SPOCAS (QLD)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	Steven Wallace
Report	657558-AID
Project Name	PARRAMATTA
Project ID	7957
Received Date	May 23, 2019
Date Reported	May 30, 2019

Methodology:

Methodology.	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name	PARRAMATTA
Project ID	7957
Date Sampled	May 21, 2019
Report	657558-AID

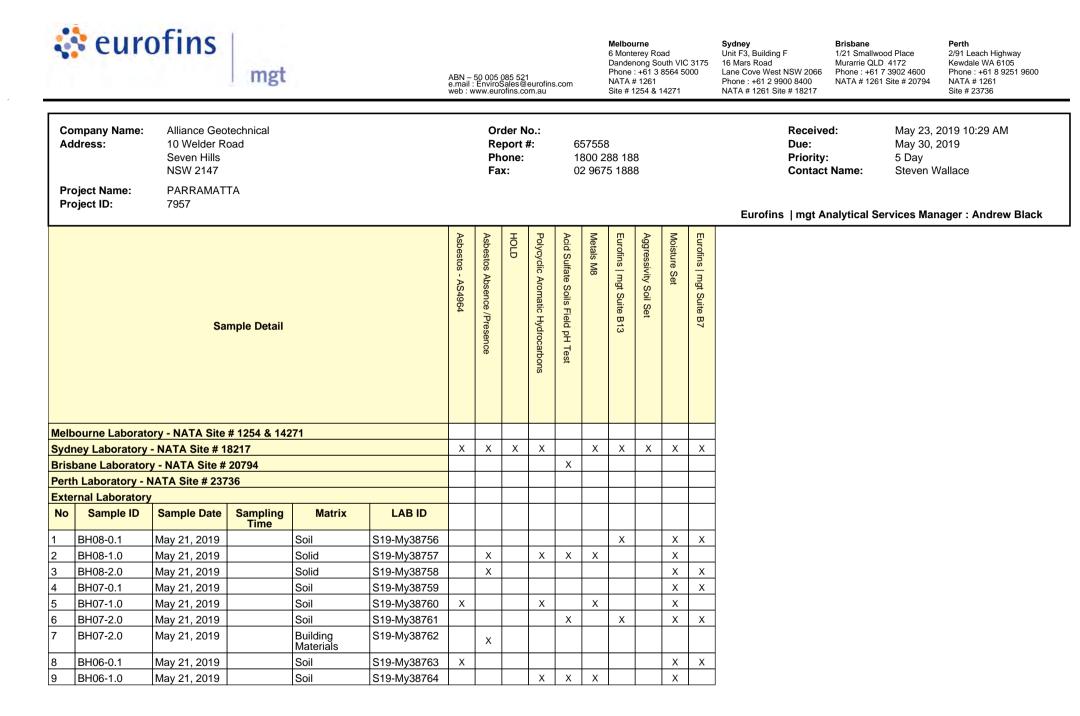
Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH08-1.0	19-My38757	May 21, 2019	Approximate Sample 109g / 125x25x20mm Sample consisted of: White plaster cement-like material	Chrysotile and amosite asbestos detected.
BH08-2.0	19-My38758	May 21, 2019	Approximate Sample 64g / 135x60x10mm Sample consisted of: White plaster cement-like material	Chrysotile and amosite asbestos detected.
BH07-1.0	19-My38760	May 21, 2019	Approximate Sample 215g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH07-2.0	19-My38762	May 21, 2019	Approximate Sample 4g / 20x15x4mm Sample consisted of: Grey compressed fibre cement fragments	Chrysotile and amosite asbestos detected.
BH06-0.1	19-My38763	May 21, 2019	Approximate Sample 56g Sample consisted of: Brown coarse-grained soil and rocks	Chrysotile and crocidolite asbestos detected in fibre cement fragments. Approximate raw weight of asbestos containing material = 1.9g Total estimated asbestos content in the sample = 0.19g* Total estimated asbestos concentration = 0.34% w/w* Organic fibre detected.
BH06-2.0	19-My38765	May 21, 2019	Approximate Sample 54g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH05-0.1	19-My38766	May 21, 2019	Approximate Sample 54g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

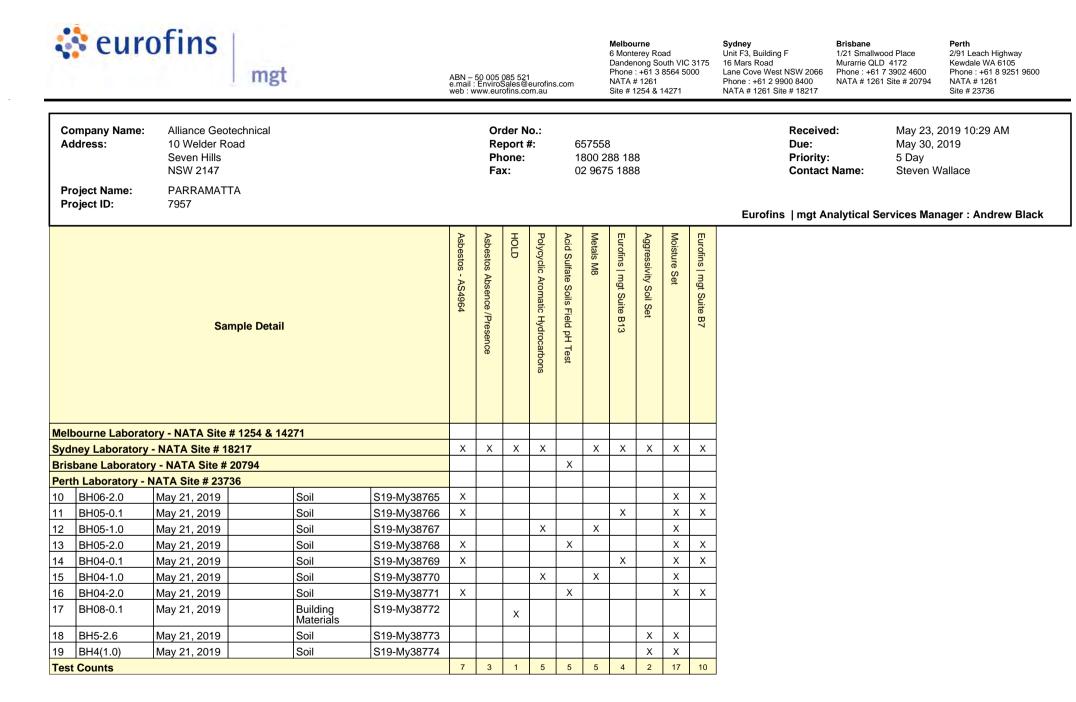
NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH05-2.0	19-My38768	May 21, 2019	Approximate Sample 118g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH04-0.1	19-My38769	May 21, 2019	Approximate Sample 244g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH04-2.0	19-My38771	May 21, 2019	Approximate Sample 50g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Sample History


Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).


If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Descrip	tion
---------	------

Asbestos - LTM-ASB-8020 Asbestos - LTM-ASB-8020

Testing Site	Extracted	Holding Time
Sydney	May 30, 2019	Indefinite
Sydney	May 30, 2019	Indefinite

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight	ght basis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration	in:	fibres/mL
Flowrate:		L/min
Terms		
Dry	Sample is dried by heating prior to analysis	
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH		ralia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamination	ion) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non-a NEPM, ACM is generally restricted to those materials that do not p	asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the bass a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, v equivalent to "non-bonded / friable".	veathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/o materials that do not pass a 7mm x 7mm sieve.	or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those
Friable	Asbestos-containing materials of any size that may be broken or o outside of the laboratory's remit to assess degree of friability.	rrumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is
Trace Analysis	Analytical procedure used to detect the presence of respirable fibr	es in the matrix.

Comments

S19-My38763, S19-My38765, S19-My38768, S19-My38771: The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention:

Steven Wallace

mgt

Report
Project name
Project ID
Received Date

659901-S PARRAMATTA 7957 Jun 07, 2019

Client Sample ID			BH01-0.1	BH01-1.0	BH01-1.5	BH02-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn08524	S19-Jn08525	S19-Jn08526	S19-Jn08527
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac		Offic				
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50
BTEX		00				
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	108	118	-	118
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	1.6
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	1.9
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	2.1
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	1.1
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	1.2
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	0.8
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	0.9
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	1.2
Chrysene	0.5	mg/kg	< 0.5	-	-	1.1

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			BH01-0.1 Soil	BH01-1.0 Soil	BH01-1.5 Soil	BH02-0.1 Soil
Eurofins mgt Sample No.			S19-Jn08524	S19-Jn08525	S19-Jn08526	S19-Jn08527
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
•		11-20	NOL FIOVIDED	Not Frovided	Not Frovided	Not Provided
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	-	2.2
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	0.7
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5 < 0.5	-	-	< 0.5
	0.5	mg/kg mg/kg	< 0.5	-	-	2.2
Pyrene Total PAH*	0.5		< 0.5	-		12.3
	1	mg/kg %	100			12.3
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	100	-	-	122
Organochlorine Pesticides		/0	105	-	-	122
	0.1	mallea	.01			
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	< 0.1	-	-	-
4.4-DDD 4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4-DDE 4.4'-DDT	0.05	mg/kg	< 0.05		-	-
a-BHC	0.05	mg/kg	< 0.05			-
Aldrin	0.05	mg/kg	< 0.05			-
b-BHC	0.05	mg/kg mg/kg	< 0.05		-	-
d-BHC	0.05	mg/kg	< 0.05	-		_
Dieldrin	0.05	mg/kg	< 0.05	-		-
Endosulfan I	0.05	mg/kg	< 0.05	-	_	-
Endosulfan II	0.05	mg/kg	< 0.05	_		-
Endosulfan sulphate	0.05	mg/kg	< 0.05	_		_
Endrin	0.05	mg/kg	< 0.05	_		_
Endrin aldehyde	0.05	mg/kg	< 0.05	_	_	_
Endrin ketone	0.05	mg/kg	< 0.05	-	-	_
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	_
Heptachlor	0.05	mg/kg	< 0.05	-	_	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	-	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	-	_
Methoxychlor	0.2	mg/kg	< 0.2	-	-	_
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	73	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	86	-	-	-
Polychlorinated Biphenyls	·					
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-
Total PCB*	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.)	1	%	73	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	86	-	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH01-0.1 Soil S19-Jn08524 Not Provided	BH01-1.0 Soil S19-Jn08525 Not Provided	BH01-1.5 Soil S19-Jn08526 Not Provided	BH02-0.1 Soil S19-Jn08527 Not Provided
	LOIN	Onit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	100	-
pH (1:5 Aqueous extract at 25°C as rec.) % Moisture	0.1	pH Units %	- 17	- 16	7.5	9.5
Heavy Metals		,,,				
Arsenic	2	mg/kg	2.9	4.5	2.4	13
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	2.9
Chromium	5	mg/kg	17	15	12	11
Copper	5	mg/kg	31	19	6.9	57
Lead	5	mg/kg	15	13	6.5	140
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.3
Nickel	5	mg/kg	40	16	< 5	44
Zinc	5	mg/kg	39	21	8.7	900
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	3.8	-
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	-	-	7.5	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	-	6.2	-
Reaction Ratings*505		comment	-	-	4.0	-

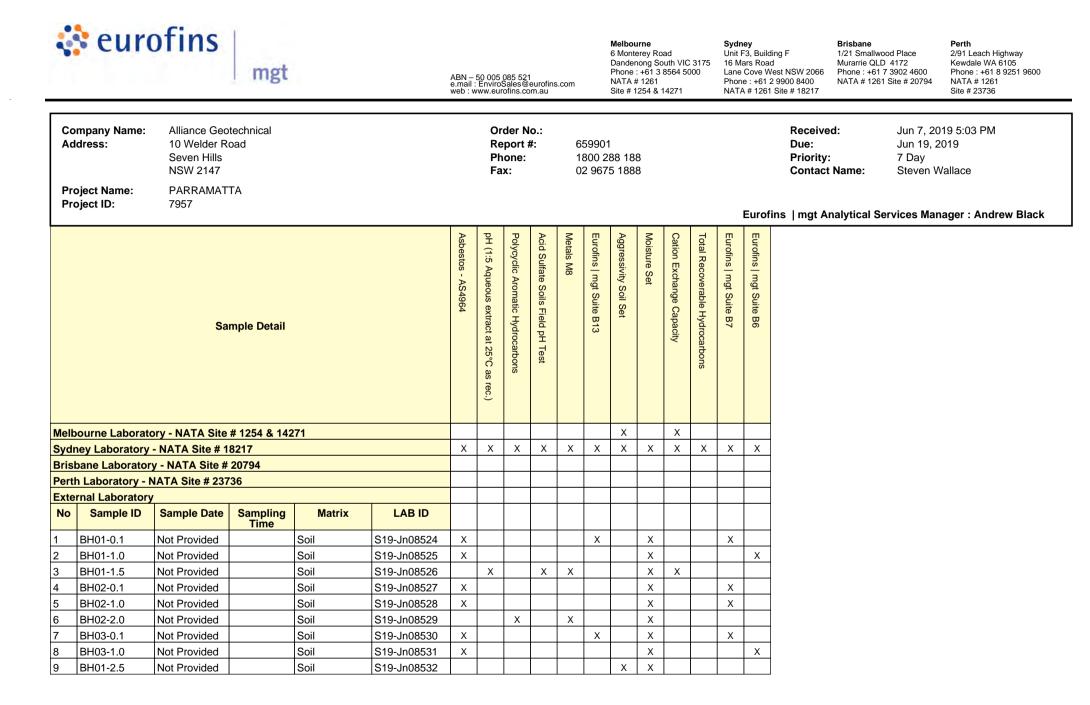
Client Sample ID			BH02-1.0	BH02-2.0	BH03-0.1	BH03-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn08528	S19-Jn08529	S19-Jn08530	S19-Jn08531
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	29	28
TRH C15-C28	50	mg/kg	< 50	-	560	400
TRH C29-C36	50	mg/kg	< 50	-	260	190
TRH C10-36 (Total)	50	mg/kg	< 50	-	849	618
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	117	-	113	107
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	660	460
TRH >C34-C40	100	mg/kg	< 100	-	130	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	790	460

Client Sample ID Sample Matrix			BH02-1.0 Soil	BH02-2.0 Soil	BH03-0.1 Soil	BH03-1.0 Soil	
Eurofins mgt Sample No.			S19-Jn08528	S19-Jn08529	S19-Jn08530	S19-Jn08531	
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided	
•		11-26	Not Frovided	Not Provided	Not Frovided	Not Provided	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	30	-	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	30	-	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	30	-	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	1.4	-	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	2.0	-	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	7.2	-	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	17	-	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	21	-	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	13	-	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	16	-	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	16	-	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	17	-	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	2.6	-	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	56	-	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	3.6	-	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	12	-	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	1.5	-	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	38	-	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	51	-	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	275.3	-	
2-Fluorobiphenyl (surr.)	1	%	111	96	96	-	
p-Terphenyl-d14 (surr.)	1	%	113	101	97	-	
Organochlorine Pesticides							
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-	
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-	
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-	
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-	
a-BHC	0.05	mg/kg	-	-	< 0.05	-	
Aldrin	0.05	mg/kg	-	-	< 0.05	-	
b-BHC	0.05	mg/kg	-	-	< 0.05	-	
d-BHC	0.05	mg/kg	-	-	< 0.05	-	
Dieldrin	0.05	mg/kg	-	-	< 0.05	-	
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-	
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-	
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-	
Endrin	0.05	mg/kg	-	-	< 0.05	-	
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-	
Endrin ketone	0.05	mg/kg	_	-	< 0.05	-	
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-	
Heptachlor	0.05	mg/kg	-	-	< 0.05	-	
Heptachlor epoxide	0.05	mg/kg	_	-	< 0.05	-	
Hexachlorobenzene	0.05	mg/kg	_	-	< 0.05	-	
Methoxychlor	0.2	mg/kg	_	-	< 0.2	_	
Toxaphene	1	mg/kg	_	-	< 1	-	
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	-	< 0.05	-	
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	-	< 0.05	_	
Vic EPA IWRG 621 OCP (Total)*	0.03	mg/kg	_	-	< 0.03	-	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-	
Dibutylchlorendate (surr.)	1	111g/kg %		-	86	-	
Tetrachloro-m-xylene (surr.)	1	%	-	-	109	-	
		70	-	-	109	-	

Client Sample ID			BH02-1.0	BH02-2.0	BH03-0.1	BH03-1.0	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Jn08528	S19-Jn08529	S19-Jn08530	S19-Jn08531	
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided	
Test/Reference	LOR	Unit					
Polychlorinated Biphenyls							
Aroclor-1016	0.5	mg/kg	-	-	< 0.5	-	
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-	
Aroclor-1232	0.5	mg/kg	-	-	< 0.5	-	
Aroclor-1242	0.5	mg/kg	-	-	< 0.5	-	
Aroclor-1248	0.5	mg/kg	-	-	< 0.5	-	
Aroclor-1254	0.5	mg/kg	-	-	< 0.5	-	
Aroclor-1260	0.5	mg/kg	-	-	< 0.5	-	
Total PCB*	0.5	mg/kg	-	-	< 0.5	-	
Dibutylchlorendate (surr.)	1	%	-	-	86	-	
Tetrachloro-m-xylene (surr.)	1	%	-	-	109	-	
% Moisture	1	%	9.6	12	14	14	
Heavy Metals							
Arsenic	2	mg/kg	3.0	62	30	23	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	0.9	0.5	
Chromium	5	mg/kg	9.2	9.5	39	29	
Copper	5	mg/kg	13	19	90	54	
Lead	5	mg/kg	170	23	260	170	
Mercury	0.1	mg/kg	0.2	< 0.1	0.1	< 0.1	
Nickel	5	mg/kg	6.4	< 5	49	34	
Zinc	5	mg/kg	290	32	400	260	

Client Sample ID Sample Matrix			BH01-2.5 Soil	BH02-2.5 Soil	BH03-2.5 Soil	BD1 Soil	
Eurofins mgt Sample No.			S19-Jn08532	S19-Jn08533	S19-Jn08534	S19-Jn08535	
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions						
TRH C6-C9	20	mg/kg	-	-	-	< 20	
TRH C10-C14	20	mg/kg	-	-	-	27	
TRH C15-C28	50	mg/kg	-	-	-	480	
TRH C29-C36	50	mg/kg	-	-	-	200	
TRH C10-36 (Total)	50	mg/kg	-	-	-	707	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions						
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5	
TRH C6-C10	20	mg/kg	-	-	-	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	-	< 20	
TRH >C10-C16	50	mg/kg	-	-	-	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50	
TRH >C16-C34	100	mg/kg	-	-	-	540	
TRH >C34-C40	100	mg/kg	-	-	-	< 100	
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	540	
Chloride	10	mg/kg	17	81	3900	-	
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	67	170	2100	-	
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.0	7.6	4.7	-	
Resistivity*	0.5	ohm.m	750	290	23	-	
Sulphate (as SO4)	10	mg/kg	21	190	800	-	
% Moisture	1	%	6.5	13	21	15	

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH01-2.5 Soil S19-Jn08532	BH02-2.5 Soil S19-Jn08533	BH03-2.5 Soil S19-Jn08534	BD1 Soil S19-Jn08535	
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided	
Test/Reference	LOR	Unit	Not i rovided	Not i Tovided	Not i rovided	Not i lovided	
Heavy Metals		0					
Arsenic	2	mg/kg	-	-	-	30	
Cadmium	0.4	mg/kg	-	-	-	0.5	
Chromium	5	mg/kg	-	-	-	32	
Copper	5	mg/kg	-	-	-	54	
Lead	5	mg/kg	-	-	-	200	
Mercury	0.1	mg/kg	-	-	-	< 0.1	
Nickel	5	mg/kg	-	-	-	30	
Zinc	5	mg/kg	-	-	-	290	
Acid Sulfate Soils Field pH Test							
pH-F (Field pH test)*	0.1	pH Units	-	-	8.4	-	
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	-	3.3	-	
Reaction Ratings*505		comment	-	-	4.0	-	


Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 13, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 13, 2019	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 13, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 13, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Jun 13, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 13, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jun 13, 2019	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Jun 13, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Chloride	Sydney	Jun 13, 2019	28 Day
- Method: E045 /E047 Chloride			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Jun 13, 2019	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	Jun 13, 2019	28 Day
- Method: E045 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Jun 14, 2019	7 Day
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Jun 14, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	Jun 08, 2019	14 Day
- Method: LTM-GEN-7080 Moisture			
Acid Sulfate Soils Field pH Test	Sydney	Jun 13, 2019	7 Days
- Method: I TM-GEN-7060 Determination of field pH (pHE) and field pH peroxide (pHEOX) tests			

- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests

🛟 eurofins	mgt		ABN – e.mail web : v	50 005 : Enviro www.eu	085 52 Sales@ rofins.co	1 eurofins om.au	s.com		Melbou 6 Monte Dander Phone NATA # Site # 1	erey Ro long So +61 3 1261	outh VIC 8564 50		16 M Lane Phon	F3, Build ars Road Cove W e : +61 2		Brisbane 1/21 Smallw Murarrie QLI Phone : +61 NATA # 126	D 4172	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Alliance Geote Address: 10 Welder Roa Seven Hills NSW 2147 Project Name: PARRAMATTA Project ID: 7957	id			Re Ph	rder N eport none: ax:	#:	1		1 288 188 75 1888					Furof	Receive Due: Priority: Contact	Name:	Jun 19, 2 7 Day Steven V	
Sam	ple Detail		Asbestos - AS4964	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Acid Sulfate Soils Field pH Test	Metals M8	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B6				
Melbourne Laboratory - NATA Site #	1254 & 14271								Х		х							
Sydney Laboratory - NATA Site # 182			Х	Х	Х	Х	х	Х	Х	Х	Х	х	Х	х				
Brisbane Laboratory - NATA Site # 2	0794																	
Perth Laboratory - NATA Site # 2373	6																	
10 BH02-2.5 Not Provided	Soil	S19-Jn08533							Х	Х								
11 BH03-2.5 Not Provided	Soil	S19-Jn08534				х			Х	Х								
12 BD1 Not Provided	Soil	S19-Jn08535					х			Х		х						
Test Counts			6	1	1	2	3	2	3	12	1	1	4	2				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre
ppm: Parts per million	ppb: Parts per billion
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units

ug/L: micrograms per litre %: Percentage MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.2 2018
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptanc Limits	e Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fi	ractions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank			· · ·		
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fi	ractions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		4100		1.000	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	iiig/kg	< 0.5	0.0	1 433	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4-DDE	mg/kg	< 0.05	0.05	Pass	
4.4-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC		< 0.05	0.05	Pass	
d-BHC Dieldrin	mg/kg				
	mg/kg	< 0.05	0.05	Pass	
Endosulfan I Endosulfan II	mg/kg mg/kg	< 0.05 < 0.05	0.05	Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank	iiig/kg	< 0.5	0.0	1 435	
Chloride	mg/kg	< 10	10	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 5	5	Pass	
Sulphate (as SO4)	mg/kg	< 10	10	Pass	
Method Blank	iiig/kg		10	газэ	
Heavy Metals Arsenic	ma/ka	< 2	2	Pass	
Cadmium	mg/kg		0.4		
	mg/kg	< 0.4	5	Pass	
Chromium	mg/kg	< 5		Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Cation Exchange Capacity					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery			1	1	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction					
TRH C6-C9	%	91	70-130	Pass	
TRH C10-C14	%	101	70-130	Pass	
LCS - % Recovery		Г Г	T		
BTEX	-		 _		
Benzene	%	98	 70-130	Pass	
Toluene	%	97	 70-130	Pass	
Ethylbenzene	%	95	 70-130	Pass	
m&p-Xylenes	%	100	 70-130	Pass	
o-Xylene	%	93	 70-130	Pass	
Xylenes - Total	%	97	 70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	s				
Naphthalene	%	107	 70-130	Pass	
TRH C6-C10	%	86	 70-130	Pass	
TRH >C10-C16	%	97	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	88	70-130	Pass	
Acenaphthylene	%	89	70-130	Pass	
Anthracene	%	89	70-130	Pass	
Benz(a)anthracene	%	86	70-130	Pass	
Benzo(a)pyrene	%	85	70-130	Pass	
Benzo(b&j)fluoranthene	%	87	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	87	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	85	70-130	Pass	
Fluoranthene	%	89	70-130	Pass	
Fluorene	%	89	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85	70-130	Pass	
Naphthalene	%	88	70-130	Pass	
Phenanthrene	%	88	70-130	Pass	
Pyrene	%	89	70-130	Pass	
LCS - % Recovery	· · ·				
Organochlorine Pesticides					
Chlordanes - Total	%	102	70-130	Pass	
4.4'-DDD	%	122	70-130	Pass	
4.4'-DDE	%	113	70-130	Pass	
4.4'-DDT	%	109	70-130	Pass	
a-BHC	%	115	70-130	Pass	
Aldrin	%	110	70-130	Pass	
b-BHC	%	106	70-130	Pass	
d-BHC	%	119	70-130	Pass	
Dieldrin	%	110	70-130	Pass	
Endosulfan I	%	107	70-130	Pass	
Endosulfan II	%	112	70-130	Pass	
Endosulfan sulphate	%	113	70-130	Pass	
Endrin	%	102	70-130	Pass	
Endrin aldehyde	%	115	70-130	Pass	
Endrin ketone	%	108	70-130	Pass	
g-BHC (Lindane)	%	113	70-130	Pass	
Heptachlor	%	111	70-130	Pass	
Heptachlor epoxide	%	111	70-130	Pass	
Hexachlorobenzene	%	105	70-130	Pass	
Methoxychlor	%	97	70-130	Pass	
Toxaphene	%	90	70-130	Pass	
LCS - % Recovery	· ·	•	 · ·		
Polychlorinated Biphenyls					
Aroclor-1260	%	102	70-130	Pass	
LCS - % Recovery			•		
Chloride	%	112	70-130	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	%	93	70-130	Pass	
Resistivity*	%	93	70-130	Pass	
Sulphate (as SO4)	%	119	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	98	70-130	Pass	
Cadmium	%	95	70-130	Pass	
Chromium	%	100	70-130	Pass	

Test				Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Copper		%	96	70-130	Pass		
Lead		%	101	70-130	Pass		
Mercury		%	99	70-130	Pass		
Nickel			%	97	70-130	Pass	
Zinc			%	96	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					 		
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S19-Jn15981	NCP	%	79	70-130	Pass	
TRH C10-C14	S19-Jn14400	NCP	%	118	70-130	Pass	
Spike - % Recovery					-		
BTEX				Result 1			
Benzene	S19-Jn15981	NCP	%	87	70-130	Pass	
Toluene	S19-Jn15981	NCP	%	87	70-130	Pass	
Ethylbenzene	S19-Jn15981	NCP	%	86	70-130	Pass	
m&p-Xylenes	S19-Jn15981	NCP	%	91	70-130	Pass	
o-Xylene	S19-Jn15981	NCP	%	88	70-130	Pass	
Xylenes - Total	S19-Jn15981	NCP	%	90	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S19-Jn15981	NCP	%	80	70-130	Pass	
TRH C6-C10	S19-Jn15981	NCP	%	78	70-130	Pass	
TRH >C10-C16	S19-Jn14400	NCP	%	112	70-130	Pass	
Spike - % Recovery		1101	/0		10 100	1 400	
Polycyclic Aromatic Hydrocark	hons			Result 1			
Acenaphthene	S19-Jn14662	NCP	%	92	70-130	Pass	
Acenaphthylene	S19-Jn14662	NCP	%	90	70-130	Pass	
Anthracene	S19-Jn14662	NCP	%	90	70-130	Pass	
Benz(a)anthracene	S19-Jn14662	NCP	%	86	70-130	Pass	
Benzo(a)pyrene	S19-Jn14662	NCP	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	S19-Jn14662	NCP	%	82	70-130	Pass	
Benzo(g.h.i)perylene	S19-Jn14662	NCP	%	90	70-130	Pass	
Benzo(k)fluoranthene	S19-Jn14662	NCP	%	90	70-130	Pass	
	S19-Jn14662	NCP	%	94			
Chrysene Dibara (a. b) anthronous	S19-Jn14662	NCP	%	88	70-130 70-130	Pass Pass	
Dibenz(a.h)anthracene							
Fluoranthene	S19-Jn14662	NCP	%	92	70-130	Pass	
Fluorene	S19-Jn14662	NCP	%	91	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Jn14662	NCP	%	89	70-130	Pass	
Naphthalene	S19-Jn14662	NCP	%	89	70-130	Pass	
Phenanthrene	S19-Jn14662	NCP	%	91	70-130	Pass	
Pyrene	S19-Jn14662	NCP	%	92	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S19-Jn12829	NCP	%	119	70-130	Pass	
4.4'-DDD	S19-Jn12416	NCP	%	96	70-130	Pass	
4.4'-DDE	S19-Jn12829	NCP	%	125	70-130	Pass	
4.4'-DDT	S19-Jn12416	NCP	%	96	70-130	Pass	
a-BHC	S19-Jn12829	NCP	%	128	70-130	Pass	
Aldrin	S19-Jn12829	NCP	%	128	70-130	Pass	
b-BHC	S19-Jn12829	NCP	%	115	70-130	Pass	
d-BHC	S19-Jn12829	NCP	%	128	70-130	Pass	
Dieldrin	S19-Jn12829	NCP	%	122	70-130	Pass	
Endosulfan I	S19-Jn12829	NCP	%	123	70-130	Pass	
Endosulfan II	S19-Jn12829	NCP	%	127	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	S19-Jn12829	NCP	%	116			70-130	Pass	
Endrin	S19-Jn12829	NCP	%	104			70-130	Pass	
Endrin aldehyde	S19-Jn12829	NCP	%	97			70-130	Pass	
Endrin ketone	S19-Jn12829	NCP	%	114			70-130	Pass	
g-BHC (Lindane)	S19-Jn12829	NCP	%	112			70-130	Pass	
Heptachlor	S19-Jn12829	NCP	%	103			70-130	Pass	
Heptachlor epoxide	S19-Jn12829	NCP	%	120			70-130	Pass	
Hexachlorobenzene	S19-Jn12829	NCP	%	120			70-130	Pass	
Methoxychlor	S19-Jn12416	NCP	%	96			70-130	Pass	
Toxaphene	S19-Jn14263	NCP	%	104			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S19-Jn12829	NCP	%	106			70-130	Pass	
Total PCB*	S19-My49750	NCP	%	93			70-130	Pass	
Spike - % Recovery								1	
Heavy Metals				Result 1					
Arsenic	S19-Jn16000	NCP	%	105			70-130	Pass	
Spike - % Recovery							1		
Heavy Metals				Result 1					
Cadmium	S19-Jn08529	CP	%	95			70-130	Pass	
Chromium	S19-Jn08529	CP	%	93			70-130	Pass	
Copper	S19-Jn08529	CP	%	100			70-130	Pass	
Lead	S19-Jn08529	CP	%	103			70-130	Pass	
Mercury	S19-Jn08529	CP	%	98			70-130	Pass	
Nickel	S19-Jn08529	CP	%	94			70-130	Pass	
Zinc	S19-Jn08529	CP	%	93			70-130	Pass	
Spike - % Recovery	019-0100029		70	35			70-130	1 855	
Spike - // Necovery				Result 1			1		
Chloride	S19-Jn08534	CP	%	94			70-130	Pass	
	S19-Jn08534	CP	%	117			70-130	Pass	
Sulphate (as SO4)	519-J106534		70	117					Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Jn15970	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Jn14399	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Jn14399	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Jn14399	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate							1		
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Jn15970	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Jn15970	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Jn15970	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Jn15970	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Jn15970	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S19-Jn15970	NCP	mg/kg	< 0.3	< 0.1	<1	30%	Pass	
Duplicate			iiig/kg	0.0	< 0.5			1 4 3 3	
Total Recoverable Hydrocarbons	- 2013 NEDM Erect	ione		Recult 1	Recult 2	RPD			
			maller	Result 1	Result 2		200/	Bass	
Naphthalene	S19-Jn15970	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Jn15970	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-Jn14399	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Jn14399	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S19-Jn14399	NCP	mg/kg	< 100	< 100	<1	30%	Pass	1

mgt

Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-Jn08327	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S19-Jn12825	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S19-Jn12825	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S19-Jn12825	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S19-Jn12825	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S19-Jn12825	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S19-Jn12825	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S19-Jn12825	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S19-Jn12825	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S19-Jn12825	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S19-Jn12825	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S19-Jn12825	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Cation Exchange Capacity				Result 1	Result 2	RPD			
Cation Exchange Capacity	M19-Jn05076	NCP	meq/100g	12	12	1.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Jn08528	CP	mg/kg	3.0	3.2	8.0	30%	Pass	
Cadmium	S19-Jn08528	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Jn08528	CP	mg/kg	9.2	9.3	<1	30%	Pass	
Copper	S19-Jn08528	CP	mg/kg	13	13	<1	30%	Pass	
Lead	S19-Jn08528	CP	mg/kg	170	170	5.0	30%	Pass	
Mercury	S19-Jn08528	CP	mg/kg	0.2	0.2	12	30%	Pass	
Nickel	S19-Jn08528	CP	mg/kg	6.4	6.5	2.0	30%	Pass	
Zinc	S19-Jn08528	CP	mg/kg	290	290	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Jn08529	CP	%	12	15	22	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S19-Jn07275	NCP	mg/kg	29	29	<1	30%	Pass	
Resistivity*	S19-Jn07275	NCP	ohm.m	200	190	6.3	30%	Pass	
Sulphate (as SO4)	S19-Jn07275	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	S19-Jn08533	СР	pH Units	7.6	7.6	Pass	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N04 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent front. 4.0; Extreme reaction.

Authorised By

Andrew Black	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Emily Rosenberg	Senior Analyst-Metal (VIC)
Gabriele Cordero	Senior Analyst-Inorganic (NSW)
Gabriele Cordero	Senior Analyst-Metal (NSW)
Julie Kay	Senior Analyst-Inorganic (VIC)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Report Project Name Project ID Received Date Date Reported	Steven Wallace 659901-AID PARRAMATTA 7957 Jun 07, 2019 Jun 18, 2019
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PARRAMATTA Project ID 7957 **Date Sampled** Report

659901-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH01-0.1	19-Jn08524	not provided	Approximate Sample 48g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH01-1.0	19-Jn08525	not provided	Approximate Sample 18g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH02-0.1	19-Jn08527	not provided	Approximate Sample 54g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH02-1.0	19-Jn08528	not provided	Approximate Sample 54g Sample consisted of: Brown coarse-grained soil and rocks	Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of asbestos = 0.00010g* Total estimated asbestos content in the sample = 0.00010g* Total estimated asbestos concentration = 0.00019% w/w* No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH03-0.1	19-Jn08530	not provided	Approximate Sample 52g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH03-1.0	19-Jn08531	not provided	Approximate Sample 57g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyJun 08, 2019Indefinite

•	euro	ofins	mgt			ABN – e.mail web : v	50 005 : Enviro www.eu	085 52 Sales@ rofins.c	1 eurofins om.au	s.com		Melbou 6 Monte Dander Phone : NATA # Site # 1	erey Ro long So +61 3 1261	outh VIC 8564 50		16 M Lane Phon	=3, Buildi ars Road Cove W e : +61 2				Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Ad	mpany Name: dress: oject Name:	Alliance Geo 10 Welder R Seven Hills NSW 2147 PARRAMAT	load									88 188	98 188 5 1888					Receive Due: Priority Contact	:	Jun 7, 20 Jun 17, 2 5 Day Steven V	
Pro	oject ID:	7957															Eurofi	ns mgt A	nalytical S	ervices Mar	ager : Andrew Black
			Imple Detail			Asbestos - AS4964	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Acid Sulfate Soils Field pH Test	Metals M8	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B6				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271								Х		х							
	hey Laboratory					Х	X	X	Х	Х	Х	Х	Х	Х	Х	X	X				
	bane Laboratory h Laboratory - N	•																			
	rnal Laboratory		150																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	BH01-0.1	Not Provided		Soil	S19-Jn08524	х					Х		Х			Х					
2	BH01-1.0	Not Provided		Soil	S19-Jn08525	Х							Х				х				
3	BH01-1.5	Not Provided		Soil	S19-Jn08526		X		X	x			Х	х							
4	BH02-0.1	Not Provided		Soil	S19-Jn08527	Х							Х			X					
5	BH02-1.0	Not Provided		Soil	S19-Jn08528	Х							Х			X					
6	BH02-2.0	Not Provided		Soil	S19-Jn08529			X		X			Х								
7	BH03-0.1	Not Provided		Soil	S19-Jn08530	X		+			Х		X			X					
8	BH03-1.0	Not Provided		Soil	S19-Jn08531	Х							X				X				
9	BH01-2.5	Not Provided		Soil	S19-Jn08532							Х	Х								

🛟 euro	ofins	mgt			ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au						Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271					e : +61 2				Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	
Company Name: Address: Project Name:	Alliance Geot 10 Welder Ro Seven Hills NSW 2147 PARRAMAT	bad				Re Pl	rder N eport none: ax:	#:	1		l 88 18 5 188	-					Receive Due: Priority Contact	:	Jun 7, 20 Jun 17, 2 5 Day Steven W		
Project ID:	7957															Eurof	ofins mgt Analytical Services Manager : Andrew				
		mple Detail			Asbestos - AS4964	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Acid Sulfate Soils Field pH Test	Metals M8	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B6					
Melbourne Laborator			71								Х		Х								
Sydney Laboratory -					X	X	X	Х	Х	Х	Х	X	Х	Х	Х	Х					
Brisbane Laboratory	- NATA Site #	20794																			
Perth Laboratory - N/						<u> </u>															
	Not Provided		Soil	S19-Jn08533		<u> </u>					Х	X									
	Not Provided		Soil	S19-Jn08534				Х			Х	X									
	Not Provided		Soil	S19-Jn08535					X			X		Х							
Test Counts					6	1	1	2	3	2	3	12	1	1	4	2					

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

•••••		
% w/w: weight for weight	ht basis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration	n:	fibres/mL
Flowrate:		L/min
Terms		
Dry	Sample is dried by heating prior to analysis	
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH		tralia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamina	tion) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non NEPM, ACM is generally restricted to those materials that do not	asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the pass a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, equivalent to "non-bonded / friable".	weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as
FA	Fibrous Asbestos. Asbestos containing materials in a friable and materials that do not pass a 7mm x 7mm sieve.	or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those
Friable	Asbestos-containing materials of any size that may be broken or outside of the laboratory's remit to assess degree of friability.	crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is
Trace Analysis	Analytical procedure used to detect the presence of respirable fit	pres in the matrix.

Comments

The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid subsampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins | mgt be liable for coss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins | mgt be liable for coss, coss, damages, net used and the standed line liable of the standed line and loss in final to the standed line and loss in final to the standed line and loss in final standed line and loss in the samples as received.

CERTIFICATE OF ANALYSIS

Work Order	ES1917825	Page	: 1 of 5	
Client		Laboratory	: Environmental Division S	ydney
Contact	: Enviro ALLIANCE GEO	Contact	: Customer Services ES	
Address	: Unit 3 / 155 Glendenning Road	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
	Glendenning NSW 2761			
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: 7957 PARRAMATTA	Date Samples Received	: 11-Jun-2019 15:00	awiin
Order number	:	Date Analysis Commenced	: 13-Jun-2019	
C-O-C number	:	Issue Date	: 18-Jun-2019 16:33	A NATA
Sampler	: TODD OBRIEN			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Peter Wu		Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Page : 3 of 5 Work Order : ES1917825 Client : ALLIANCE GEOTECHNICAL Project : 7957 PARRAMATTA

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SD1	 	
	C	lient sampli	ng date / time	11-Jun-2019 00:00	 	
Compound	CAS Number	LOR	Unit	ES1917825-001	 	
				Result	 	
EA055: Moisture Content						
Moisture Content		1.0	%	14.6	 	
EG005(ED093)T: Total Metals by ICP	-AES					
Arsenic	7440-38-2	5	mg/kg	28	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	26	 	
Copper	7440-50-8	5	mg/kg	68	 	
Lead	7439-92-1	5	mg/kg	203	 	
Nickel	7440-02-0	2	mg/kg	38	 	
Zinc	7440-66-6	5	mg/kg	340	 	
EG035T: Total Recoverable Mercury	/ by FIMS					
Mercury	7439-97-6	0.1	mg/kg	0.1	 	
EP080/071: Total Petroleum Hydroca	arbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	640	 	
C29 - C36 Fraction		100	mg/kg	460	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	1100	 	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	 	
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	970	 	
>C34 - C40 Fraction		100	mg/kg	230	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	1200	 	
^ >C10 - C16 Fraction minus Naphthalen	e	50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	

Page	: 4 of 5
Work Order	: ES1917825
Client	: ALLIANCE GEOTECHNICAL
Project	: 7957 PARRAMATTA

Analytical Results

	Clie	ent sample ID	SD1				
Cli	ent samplii	ng date / time	11-Jun-2019 00:00				
CAS Number	LOR	Unit	ES1917825-001				
			Result				
	0.5	mg/kg	<0.5				
91-20-3	1	mg/kg	<1				
17060-07-0	0.2	%	90.1				
2037-26-5	0.2	%	99.0				
460-00-4	0.2	%	96.0				
	CAS Number 91-20-3 17060-07-0 2037-26-5	Client samplii CAS Number LOR 0.5 91-20-3 1 17060-07-0 0.2 2037-26-5 0.2	0.5 mg/kg 91-20-3 1 mg/kg 17060-07-0 0.2 % 2037-26-5 0.2 %	Client sampling date / time 11-Jun-2019 00:00 CAS Number LOR Unit ES1917825-001 0.5 mg/kg <0.5	Client sampling date / time 11-Jun-2019 00:00 CAS Number LOR Unit ES1917825-001 Result Result 0.5 mg/kg <0.5 91-20-3 1 mg/kg <1 17060-07-0 0.2 % 90.1 2037-26-5 0.2 % 99.0	Client sampling date / time 11-Jun-2019 00:00 CAS Number LOR Unit ES1917825-001 Result Result 0.5 mg/kg <0.5 91-20-3 1 mg/kg <1 17060-07-0 0.2 % 90.1 2037-26-5 0.2 % 99.0	Client sampling date / time 11-Jun-2019 00:00 CAS Number LOR Unit ES1917825-001 Result 0.5 mg/kg <0.5 91-20-3 1 mg/kg <1 17060-07-0 0.2 % 90.1 2037-26-5 0.2 % 99.0

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Increase Incre	Company	ALLIANCE GEO	DTECHNICAL	Proj	ject Nº			79	57		STAGE STAGE	Project Manager				Steven		Sampl	er(s)		Todd Obrien						
Image: Sector	Address	10 WELDER ROAD, 5	SEVEN HILLS NSW	Proje	ct Name	1		Parra	matta			(ESdat,	EQuIS,							Handed	over by			Tod	d Obrien		
Processor		AN I																6	5	Email for	Invoice		en	viro@a	ligeo.cc	om.au	
Private	Contact Name			inter the second																Email for	Result					1 E	
Autor Autor <th< td=""><td>Phone Nº</td><td>a 12</td><td></td><td>es d'Elphrer 1 d'Elphrer 1</td><td>ence</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Cor</td><td>tainers</td><td></td><td>Requ</td><td></td><td></td><td></td></th<>	Phone Nº	a 12		es d'Elphrer 1 d'Elphrer 1	ence																Cor	tainers		Requ			
Orient Contribution Municipation Production Productina Production Production Production Productina Productina	ecial Directions			Analys he was a provided and	s presence abs	IRH	BTEX	PAH	Metais	OCP	PCB	phtiphfox					-						e (1	T I		n)* □ 2 Day*	
Cent Sample D Description of the work	urchase Order		Mail I.	Wine HAM	Asbestos								9							L Plastic mL Plastic	rol. Plastic Amber Gla	L VOA vial	PFAS Bott ass or HDP			^{na} 5 Day *Suncharge	s apply
BH8-4.1 240519 S X <t< td=""><td></td><td>Client Sample ID</td><td>Date/Time (dd/mm/yy</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>250</td><td>125 200mt</td><td>40m</td><td>500m Lar (G</td><td>All and a second second</td><td>nple Comme</td><td></td><td></td></t<>		Client Sample ID	Date/Time (dd/mm/yy																	250	125 200mt	40m	500m Lar (G	All and a second second	nple Comme		
BMBe1.9 S </td <td>BH08-0,1</td> <td></td> <td></td> <td>s</td> <td></td> <td>×</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td></td>	BH08-0,1			s		×	x	x	x	x	x																
BH8-2.0 C10519 S X <t< td=""><td>-</td><td></td><td>21/05/19</td><td>-</td><td>x</td><td>-</td><td>~</td><td>1</td><td></td><td></td><td>844</td><td>x</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- riable Asber</td><td>tos within sar</td><td>nple</td></t<>	-		21/05/19	-	x	-	~	1			844	x													- riable Asber	tos within sar	nple
BH7-1.1 2105/19 S X <	BH08-2.0		21/05/19	S	1.11.12	x	x																		Friable Asber	atos within sar	mple
BH97-2.0 21/05/19 S X	BH07-0.1	C. C. C. S.	21/05/19	S		100	0-10-5		1.5-12	The set																	
BH06.01 S100/19 S X <	BH07-1.0		21/05/19	S	×			×	x		-				10000										Friable Asber	stos within sar	nple
BH66-1.0 2105/19 S X	BH07-2.0		21/05/19	S	×	x	x	x	x	×	x	×													riable Asber	stos within sar	mple
BH06-2.9 21/05/19 S X	BH06-0.1		21/05/19	S	x	x	x	x	x														Sea.				
BH05-0.1 21/05/19 S X	BH06-1.0		21/05/19	S			1.50	x	x			×									12 20 10						
BH65.10 21/05/19 S X	BH06-2.0		21/05/19	S	×	×	×	×	X		2																
BH8520 21/05/19 S X <	BH05-0.1		21/05/19	S	×	×	x	×	x	×	×								an a								
BH04-0.1 21/05/19 S X	BH05-1.0		21/05/19	s				x	x													2					
BH841.8 21/05/19 S X X S S S S S S S S S S S S S S S S	BH05-2.0		21/05/19	S	Parente I	-	1.00019					×				4.2											
	BH04-0.1		21/05/19	S	X	X	X	X	X	×	X	-					A Reality										
BH04.20 21/05/19 S X X X X X X	BH04-1.0		21/05/19	S																							
	BH04-2.0	and the		a la la	X	X	10115	1999	1921.38		1000										1				112-1272		
Total Counts 10 10 10 15 15 4 4 5 Image: Signature Date Time						1-2-5-			1	4	4	5		Dire	ahura										Time		

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request. Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt etm 17 August 2017

QS3009_R7 Modified by Dr. R Symone Approved by T. Lakeland Appr

2
ă.
20
a 👘
£
500
č. –
Ξ.
0
20
5
ę.
5
>
2 · · ·
2
2
5
111
-
20
1
37
10
800
Eurofins Enviro
3
1
1
-5
×
-
3
P
-
-
9
S
—
3
8
-
~
5
S
=
20
-
20
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
-
-
ing Australia Pty Ltd trad
-
5
B
12
3
ŝ
-
മ
S
m
-
-
0
- En
3
S
trading as Eurofins   mgt
-
3
g

Laboratory Use Only Submission of samples to the	Eurofins   mgt	Method of Shipment		13 BD-1	12 SD1	11 BH03-2.5	10 BH02-2.5	9 BH01-2.5	8 BH03-,1.0	7 BH03-0.1	6 BH02.2.0	5 BH021.0	4 BH02-0,1	3 BH01-1.5	2 BH01-1.0	1 BH01-0.1	£	Quote ID Ne	Purchase Order	Special Directions	Phone Ns	Contact Name		Address	Company	CH CH
N Received By	Received By	Courier (#															Client Sample ID							10 WELDER ROA	ALLIANCE	
d as weleastance of Eurofins	Guare T	) 0	Total														Sampled Date/Time (ddimmlyy hh:mm)							10 WELDER ROAD, SEVEN HILLS NSW	ALLIANCE GEOTECHNICAL	ODY RECORI
and Standard Te	Tuesday	Hand Delivered	Total Counts		-												Matrix (Solid (S) Water (W)	()jcte W	tyrne (1001)/Ca.	Analy	SES	1 error" ) (4.8	TE onle must	Pro	Pr	
nd c	Cont and		Ø						×	×		×	×		×	×	2 4	A	sbesto	s presence ab	Source Printing			Project Name	Project Nº	Sydney La Unit F3 Bid I 02 9800 840
SYD   BNE   MEL   PER   ADL   NTL   DRW	D ANE I MEL I PER I ADL I NTL I DRW	D Po	00	×	×	i ant			×	×		×	×		×	×	TRH BTEX						Sydney Laboratory Unit F3 Bid,F. 16 Mars Rd, Lane Cove W     02 9900 6400 EnviroSampleNSW@eu			
L   PER   A		Postal	6					1	×	×		×	×		×	×										
DL   NTL	DL I NTL I	Name	σ							×	×	×	×			×				PAH				Parramatta	7957	Cove West, NSW 2066 SW@eurofins.com
DRW	DRW	me	10	×	×				×	×	×	×	×	×	×	×				Metals	18			latta	7	6
Signature	Signature		2							×						×				OCP						9 5 9
	Line .		2							×						×				PCB					T	isbane Lab It 1, 21 Small 3902 4600
Condition	Jucie		-											×				Constant of the second		CEC				EDD Format (ESdat, EQuIS, Custom)	Project Manager	D' Brisbane Laboratory Unit 1, 21 Smallwood PL, Murarrie, OLD 4172 07 3902 4800 EnviroSample/OLD@eurofins.
in munilable			+	15										×		-		2		pH	1			)) Iuis,	ager	arrie, QLD 41) aQLD@eurofi
on transition	iccurd	Signature	3			×	×	×												Aggressivity						2 hs.com
		0	2			×	in the second se	1						×			-			ph phfox					Ste	
Date	Date															1									Steven Wallace	Unit 2, 08 925
	14																	110							ce	91 Leach High 1 9600 Envi
-1-1-	7.10.10			2	12		1020		1							3.2					-					hway Kewda roSampleWA
						5								198		nices			Plastic		1	Email	Email	Hand	Su	Perth Laboratory Unit 2, 91 Lesch Highway, Kewdsle WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com
Time	Time	Date								1											ç	Email for Results	Email for Invoice	Handed over by	Sampler(s)	3
1	davi	L						378									A Statistics		VOA vial		Containers					
ľ	203	F						-				12.20		SA			-						envir			2 Kingston 1 03 5564 500
Report No	Temperature	Time			Sent to ALS for												Sample Comme Goods Haza	D Other (	D 3 Day*	<ul> <li>Overnight (9am)*</li> <li>1 Day*</li> </ul>	뮡		enviro@allgeo.com.au	Todd Obrien	Todd Obrien	Metibourne Laboratory     Xingston Town Close, Oakleigh, VIC 3166     03 5564 5000 EnveroSempleVic@eurofins.com
65940	13.70	ŀ			Sent to ALS for split analysis												Sample Comments / Dangerous Goods Hasard Warning		5 Day * Surcharges apply	n)* © 2 Day*	Turnaround Time (TAT) rements galant will be 3 days if not below		m.au			3166 rofins.com

lege 1et 1 033009_97 Medited by Dr.R.Symens Approved by T

## **APPENDIX E**

## PAH SOURCE ANALYST RESULT SUMMARY



# Method 2:

## Background

Home

Documentation

**PAH Source Properties** 

Upload PAH Data

Method 1 Output

Method 2 Output

Terms and Conditions

Contact Us

## Ke

Normalised,

Summed

Difference

**Pyrene** 

Key: • Very Good (<1)

• **Good** (1-2)

- Reasonable (2-3)
- **Poor** (>3)

<b>Reference Material</b>	BH03_0.1m	BH05_2.0				
Black Coal Tar 1	9.83	9.91				
Black Coal Tar 2	3.36	3.58				
Black Coal Tar 3	2.44	2.69				
Brown Coal Tar	15.69	16.52				
Steelworks Tar 1	4.03	4.46				
Steelworks Tar 2	4.24	4.16				
Weathered Coal Tar	4.62	5.21				
Creosote 1	5.7	7.07				
Creosote 2	8.68	10.06				
Weathered Creosote	3.91	5.29				
Ash form Black Coal 1	1.22	0.98				
Ash from Black Coal 2	1.02	1.41				

PAH Source Home Page

Ash from Black Coal 3	1.71	1.53
Ash from Brown Coal	1.75	0.73
Bitumen	12.06	11.71
Coke	1.59	0.88
Waste Oil Petrol	5.34	4.34
Waste Oil Diesel	2.62	2.52
Roadseal	1.95	2.37
1		1



Copyright © Environmental Earth Sciences International